File size: 6,578 Bytes
5acffd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import re

import einops
import gradio as gr
import matplotlib.cm as cm
import numpy as np
import plotly.graph_objects as go
import torch
import torch.nn.functional as F
import torchdiffeq

DESCRIPTION = """
<div class="head">
<div class="title">Fast LiDAR Data Generation with Rectified Flows</div>
<div class="conference">ICRA 2025</div>
<div class="authors">
<a href="https://kazuto1011.github.io/" target="_blank" rel="noopener"> Kazuto Nakashima</a><sup>1</sup>
&nbsp;&nbsp;&nbsp;
<a> Xiaowen Liu</a><sup>1</sup>
&nbsp;&nbsp;&nbsp;
<a> Tomoya Miyawaki</a><sup>1</sup>
&nbsp;&nbsp;&nbsp;
<a> Yumi Iwashita</a><sup>2</sup>
&nbsp;&nbsp;&nbsp;
<a> Ryo Kurazume</a><sup>1</sup>
</div>
<div class="affiliations">
<sup>1</sup>Kyushu University
&nbsp;&nbsp;&nbsp;
<sup>2</sup>NASA Jet Propulsion Laboratory
</div>
<div class="materials">
<a href="https://kazuto1011.github.io/r2flow">Project</a> |
<a href="https://arxiv.org/abs/2412.02241">Paper</a> |
<a href="https://github.com/kazuto1011/r2flow">Code</a>
</div>
<br>
<div class="description">
This is a demo of our paper "Fast LiDAR Data Generation with Rectified Flows" accepted to ICRA 2025.<br>
We propose <strong>R2Flow</strong>, a rectified flow-based LiDAR generative model which generate the LiDAR range/reflectance images.<br>
</div>
<br>
</div>
"""

if torch.cuda.is_available():
    device = "cuda"
elif torch.backends.mps.is_available():
    device = "mps"
else:
    device = "cpu"

torch.set_grad_enabled(False)
torch.backends.cudnn.benchmark = True
device = torch.device(device)


model_dict = {
    "1-RF": "r2flow-kitti360-1rf",
    "2-RF": "r2flow-kitti360-2rf",
    "2-RF + 4-TD": "r2flow-kitti360-2rf-4td",
    "2-RF + 2-TD": "r2flow-kitti360-2rf-2td",
    "2-RF + 1-TD": "r2flow-kitti360-2rf-1td",
}


torch_hub_kwargs = dict(
    repo_or_dir="kazuto1011/r2flow",
    model="pretrained_r2flow",
    device=device,
    show_info=False,
)


def colorize(tensor: torch.Tensor, cmap_fn=cm.turbo):
    colors = cmap_fn(np.linspace(0, 1, 256))[:, :3]
    colors = torch.from_numpy(colors).to(tensor)
    tensor = tensor.squeeze(1) if tensor.ndim == 4 else tensor
    ids = (tensor * 256).clamp(0, 255).long()
    tensor = F.embedding(ids, colors).permute(0, 3, 1, 2)
    tensor = tensor.mul(255).clamp(0, 255).byte()
    return tensor


def model_verbose(model, nfe, progress):
    handler = progress.tqdm(range(nfe), desc="Generating...")

    def _model(t, x):
        handler.update(1)
        return model(t, x)

    return _model


def generate(nfe: int, solver: str, phase: str, progress=gr.Progress()):
    model, lidar_utils, _ = torch.hub.load(config=model_dict[phase], **torch_hub_kwargs)

    with torch.inference_mode():
        x1 = torchdiffeq.odeint(
            func=model_verbose(model, int(nfe), progress),
            y0=torch.randn(1, model.in_channels, *model.resolution, device=device),
            t=torch.linspace(0, 1, int(nfe) + 1, device=device),
            method=solver,
        )[-1]

    depth = lidar_utils.restore_metric_depth(x1[:, [0]])
    rflct = lidar_utils.denormalize(x1[:, [1]])
    point = lidar_utils.convert_metric_depth(depth, format="cartesian")

    z_min, z_max = -2, 0.5
    z = (point[:, [2]] - z_min) / (z_max - z_min)
    color = colorize(z.clamp(0, 1), cm.viridis) / 255
    point = einops.rearrange(point, "1 c h w -> (h w) c").cpu().numpy()
    color = einops.rearrange(color, "1 c h w -> (h w) c").cpu().numpy()
    fig = go.Figure(
        data=[
            go.Scatter3d(
                x=-point[..., 0],
                y=-point[..., 1],
                z=point[..., 2],
                mode="markers",
                marker=dict(size=1, color=color),
            )
        ],
        layout=dict(
            scene=dict(
                xaxis=dict(showticklabels=False, visible=False),
                yaxis=dict(showticklabels=False, visible=False),
                zaxis=dict(showticklabels=False, visible=False),
                aspectmode="data",
            ),
            margin=dict(l=0, r=0, b=0, t=0),
            paper_bgcolor="white",
            plot_bgcolor="white",
        ),
    )
    depth = depth / lidar_utils.max_depth
    depth = colorize(depth, cm.turbo)[0].permute(1, 2, 0).cpu().numpy()
    rflct = colorize(rflct, cm.turbo)[0].permute(1, 2, 0).cpu().numpy()

    model.cpu()
    lidar_utils.cpu()
    return depth, rflct, fig


def setup_dropdown(value):
    if "TD" in value:
        solver_choices = ["euler"]
        solver_default = "euler"
        num_step = re.findall(r"(\d+)-TD", value)[0]
        nfe_choices = [num_step]
        nfe_default = num_step
    else:
        solver_choices = ["euler", "dopri5"]
        solver_default = "euler"
        nfe_choices = [2**i for i in range(0, 9)]
        nfe_default = 256
    dropdown_solver = gr.Dropdown(
        choices=solver_choices,
        value=solver_default,
        label="ODE solver",
        info="Fixed if TD enabled",
    )
    dropdown_nfe = gr.Dropdown(
        choices=nfe_choices,
        value=nfe_default,
        label="Number of sampling steps",
        info="Fixed if TD enabled",
    )
    return dropdown_solver, dropdown_nfe


with gr.Blocks(
    css="""
.head {
  text-align: center;
  display: block;
  font-size: var(--text-xl);
}

.title {
  font-size: var(--text-xxl);
  font-weight: bold;
  margin-top: 2rem;
}

.description {
  font-size: var(--text-lg);
}
    """,
    theme=gr.themes.Ocean(),
) as demo:
    gr.HTML(DESCRIPTION)

    with gr.Row(variant="panel"):
        with gr.Column():
            gr.Textbox(device, label="Running device")
            dropdown_model = gr.Dropdown(
                choices=list(model_dict.keys()),
                value="2-RF + 4-TD",
                label="Model checkpoint",
                info="RF: rectified flow, TD: timestep distillation",
            )
            dropdown_solver, dropdown_nfe = setup_dropdown(dropdown_model.value)
            dropdown_model.change(
                setup_dropdown,
                inputs=[dropdown_model],
                outputs=[dropdown_solver, dropdown_nfe],
            )
            btn = gr.Button(value="Generate", variant="primary")

        with gr.Column():
            range_view = gr.Image(type="numpy", label="Range image")
            rflct_view = gr.Image(type="numpy", label="Reflectance image")
            point_view = gr.Plot(label="Point cloud")

    btn.click(
        generate,
        inputs=[dropdown_nfe, dropdown_solver, dropdown_model],
        outputs=[range_view, rflct_view, point_view],
    )


demo.queue()
demo.launch()