import streamlit as st import requests import numpy as np import json from skimage.transform import resize from PIL import Image import tensorflow as tf from tensorflow.keras.models import Sequential, Model model = tf.keras.models.load_model('model_a') # Load page def run(): # widget input with st.form(key='form_parameters'): st.title("Apple or Orange") uploaded_file = st.file_uploader("Insert a picture (jpg or jpeg)", type=['jpg','jpeg']) st.markdown('---') submitted = st.form_submit_button('Predict') if submitted: image = Image.open(uploaded_file) np_img = np.asarray(image) resized = resize(np_img, (256,256),anti_aliasing=True) # st.write(resized.shape) x = np.expand_dims(resized, axis=0) images = np.vstack([x]) classes = model.predict(images) # st.write(res['predictions'][0][0]) print(classes) if classes[0][0] <= 0.1: st.write('Apple') elif classes[0][0] >= 0.9: st.write('Orange') else: st.write('Unknown') st.image(resized) if __name__ == '__main__': run()