File size: 18,243 Bytes
282ba6f
 
 
 
 
 
eaf7024
8e98dab
 
 
ee913c5
282ba6f
 
 
 
ee913c5
282ba6f
 
 
 
 
 
eaf7024
 
 
7eb23d4
eaf7024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa2c74
eaf7024
 
ee913c5
eaf7024
ee913c5
 
 
 
 
 
 
eaf7024
ee913c5
 
 
 
 
8e98dab
ee913c5
 
8e98dab
 
 
 
 
 
ee913c5
 
 
 
 
 
8e98dab
ee913c5
8e98dab
 
 
 
 
 
 
 
 
ee913c5
8e98dab
ee913c5
 
 
 
8e98dab
ee913c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e98dab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee913c5
8e98dab
ee913c5
8e98dab
ee913c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e98dab
 
 
 
 
ee913c5
 
8e98dab
 
ee913c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e98dab
ee913c5
 
 
 
8e98dab
ee913c5
8e98dab
ee913c5
 
 
8e98dab
ee913c5
9aa2c74
ee913c5
8e98dab
ee913c5
 
 
 
8e98dab
ee913c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaf7024
ee913c5
253ba0b
ee913c5
 
9aa2c74
8e98dab
9aa2c74
eaf7024
 
 
 
ee913c5
8e98dab
eaf7024
 
 
8e98dab
ee913c5
 
 
 
 
 
 
 
9aa2c74
ee913c5
eaf7024
 
 
 
 
 
9aa2c74
eaf7024
8e98dab
eaf7024
 
8e98dab
eaf7024
9aa2c74
eaf7024
 
 
 
 
 
 
 
9aa2c74
8e98dab
eaf7024
 
 
 
 
8e98dab
eaf7024
282ba6f
8e98dab
eaf7024
8e98dab
 
eaf7024
282ba6f
eaf7024
 
ee913c5
eaf7024
 
282ba6f
eaf7024
 
 
ee913c5
 
 
 
 
 
 
 
 
 
 
eaf7024
 
9aa2c74
282ba6f
eaf7024
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import gradio as gr
import whisper
import os
import tempfile
from pydub import AudioSegment
import math
import gc # Garbage Collector interface
import requests
import zipfile
import re
from urllib.parse import urlparse

# --- Helper Functions ---

def format_time(seconds):
    """Converts seconds to SRT time format (HH:MM:SS,ms)"""
    hours = int(seconds / 3600)
    minutes = int((seconds % 3600) / 60)
    secs = int(seconds % 60)
    milliseconds = int((seconds - int(seconds)) * 1000)
    return f"{hours:02d}:{minutes:02d}:{secs:02d},{milliseconds:03d}"

def generate_srt_from_result(result, transcription_mode):
    """Generates SRT content from Whisper's result dictionary."""
    srt_content = []
    
    if transcription_mode == "word":
        # Word-level SRT generation
        entry_index = 1
        for segment in result["segments"]:
            for word_info in segment.get("words", []):
                start_time = format_time(word_info["start"])
                end_time = format_time(word_info["end"])
                text = word_info["word"].strip()
                if text: # Ensure we don't add empty entries
                    srt_content.append(f"{entry_index}\n{start_time} --> {end_time}\n{text}\n")
                    entry_index += 1
    else: # Default to segment-level
        for i, segment in enumerate(result["segments"], 1):
            start_time = format_time(segment["start"])
            end_time = format_time(segment["end"])
            text = segment["text"].strip()
            if text:
                srt_content.append(f"{i}\n{start_time} --> {end_time}\n{text}\n")

    return "\n".join(srt_content)

# --- Google Drive Helper Functions ---

def extract_file_id_from_drive_url(url):
    """Extract file ID from various Google Drive URL formats"""
    patterns = [
        r'/file/d/([a-zA-Z0-9-_]+)',
        r'id=([a-zA-Z0-9-_]+)',
        r'/d/([a-zA-Z0-9-_]+)'
    ]
    
    for pattern in patterns:
        match = re.search(pattern, url)
        if match:
            return match.group(1)
    return None

def download_from_google_drive(file_id, destination):
    """Download file from Google Drive using file ID"""
    def get_confirm_token(response):
        for key, value in response.cookies.items():
            if key.startswith('download_warning'):
                return value
        return None

    def save_response_content(response, destination):
        CHUNK_SIZE = 32768
        with open(destination, "wb") as f:
            for chunk in response.iter_content(CHUNK_SIZE):
                if chunk:
                    f.write(chunk)

    URL = "https://docs.google.com/uc?export=download"
    session = requests.Session()

    response = session.get(URL, params={'id': file_id}, stream=True)
    token = get_confirm_token(response)

    if token:
        params = {'id': file_id, 'confirm': token}
        response = session.get(URL, params=params, stream=True)

    save_response_content(response, destination)

def extract_zip_and_get_video_files(zip_path, extract_dir):
    """Extract zip file and return list of video files"""
    video_extensions = {'.mp4', '.avi', '.mov', '.mkv', '.wmv', '.flv', '.webm', '.m4v'}
    video_files = []
    
    with zipfile.ZipFile(zip_path, 'r') as zip_ref:
        zip_ref.extractall(extract_dir)
        
        # Find all video files in extracted content
        for root, dirs, files in os.walk(extract_dir):
            for file in files:
                if any(file.lower().endswith(ext) for ext in video_extensions):
                    video_files.append(os.path.join(root, file))
    
    return video_files

def process_google_drive_zip(drive_url, temp_dir):
    """Download and extract Google Drive zip, return video files"""
    # Extract file ID from URL
    file_id = extract_file_id_from_drive_url(drive_url)
    if not file_id:
        raise ValueError("Invalid Google Drive URL. Please ensure it's a valid shareable link.")
    
    # Download zip file
    zip_path = os.path.join(temp_dir, "downloaded.zip")
    download_from_google_drive(file_id, zip_path)
    
    # Extract and find video files
    extract_dir = os.path.join(temp_dir, "extracted")
    os.makedirs(extract_dir, exist_ok=True)
    video_files = extract_zip_and_get_video_files(zip_path, extract_dir)
    
    if not video_files:
        raise ValueError("No video files found in the zip archive.")
    
    return video_files

# --- New Function for Advanced Mode ---

def process_advanced_segments(full_result, max_words):
    """
    Post-processes segments for Word-level Advanced mode.
    Groups words into new segments with <= max_words per segment, splitting at nearest punctuation.
    Adjusts timestamps based on actual word times (or proportional if needed).
    Optimized: Single pass with limited lookahead.
    """
    # Define punctuation for natural splits
    punctuation = {'.', '!', '?', ';', ',', '--'}
    
    # Flatten all words into a single list for continuous processing
    all_words = []
    for segment in full_result["segments"]:
        all_words.extend(segment.get("words", []))
    
    if not all_words:
        return full_result  # Nothing to process
    
    new_segments = []
    current_words = []
    i = 0
    while i < len(all_words):
        current_words.append(all_words[i])
        
        if len(current_words) >= max_words:
            # Find nearest punctuation for split
            split_index = -1
            
            # Look backward in current words for last punctuation
            for j in range(len(current_words) - 1, -1, -1):
                word_text = current_words[j]["word"].strip()
                if word_text[-1] in punctuation:
                    split_index = j + 1  # Split after this word
                    break
            
            # If none, look forward in next words (limited lookahead to optimize)
            if split_index == -1:
                lookahead_end = min(i + 1 + 10, len(all_words))  # Cap lookahead for efficiency
                for j in range(i + 1, lookahead_end):
                    word_text = all_words[j]["word"].strip()
                    current_words.append(all_words[j])  # Temporarily add to current
                    i += 1  # Advance i as we add
                    if word_text[-1] in punctuation:
                        split_index = len(current_words)  # Split after this added word
                        break
            
            # Fallback: Split at max_words if no punctuation found
            if split_index == -1:
                split_index = max_words
            
            # Create new segment for current group up to split
            group_words = current_words[:split_index]
            if group_words:
                text = " ".join(w["word"].strip() for w in group_words)
                start = group_words[0]["start"]
                end = group_words[-1]["end"]
                new_segments.append({"start": start, "end": end, "text": text, "words": group_words})
            
            # Remaining words become start of next group (timestamp adjustment: shifted to next)
            current_words = current_words[split_index:]
        
        i += 1
    
    # Add any remaining words as last segment
    if current_words:
        text = " ".join(w["word"].strip() for w in current_words)
        start = current_words[0]["start"]
        end = current_words[-1]["end"]
        new_segments.append({"start": start, "end": end, "text": text, "words": current_words})
    
    # Handle rare case: If no word timestamps, fall back to proportional adjustment
    for seg in new_segments:
        if "words" not in seg or not seg["words"]:
            # Proportional split (as per your description: adjust based on word count ratio)
            orig_start = seg["start"]
            orig_end = seg["end"]
            word_count = len(seg["text"].split())
            if word_count > max_words:
                ratio = max_words / word_count
                split_time = orig_start + (orig_end - orig_start) * ratio
                seg["end"] = split_time  # Minus from current
                # Next segment would start at split_time (but since we're rebuilding, it's handled in loop)
    
    # Replace original segments with new ones
    full_result["segments"] = new_segments
    return full_result

# --- Main Transcription Logic ---

def transcribe_video(video_path, drive_url, model_name, transcription_mode, chunk_length_min, max_words):
    """
    Transcribes video file(s) - either uploaded directly or from Google Drive zip.
    """
    # Determine input source
    if drive_url and drive_url.strip():
        if video_path is not None:
            return "Please provide either a video file OR a Google Drive URL, not both.", None
        input_source = "drive"
        yield "Processing Google Drive URL...", None
    elif video_path is not None:
        input_source = "upload"
        yield "Processing uploaded video...", None
    else:
        return "Please upload a video file or provide a Google Drive zip URL.", None

    yield "Loading model...", None

    # Load the Whisper model
    try:
        model = whisper.load_model(model_name)
    except Exception as e:
        return f"Error loading model: {e}", None

    yield f"Model '{model_name}' loaded.", None

    # Use a temporary directory for all our files
    with tempfile.TemporaryDirectory() as temp_dir:
        try:
            # Get video file(s) based on input source
            if input_source == "drive":
                yield "Downloading and extracting from Google Drive...", None
                video_files = process_google_drive_zip(drive_url.strip(), temp_dir)
                yield f"Found {len(video_files)} video file(s) in zip archive.", None
                
                # For simplicity, process the first video file found
                # You could modify this to process all files if needed
                current_video_path = video_files[0]
                if len(video_files) > 1:
                    yield f"Multiple videos found. Processing: {os.path.basename(current_video_path)}", None
            else:
                current_video_path = video_path

            yield "Extracting audio...", None

            # Extract audio from video using pydub
            audio_path = os.path.join(temp_dir, "extracted_audio.wav")
            try:
                video = AudioSegment.from_file(current_video_path)
                # Export as WAV, 16kHz, mono - ideal for Whisper
                video.set_channels(1).set_frame_rate(16000).export(audio_path, format="wav")
                audio = AudioSegment.from_wav(audio_path)
            except Exception as e:
                return f"Error processing video/audio: {e}", None
            
            # --- Chunking Logic ---
            chunk_length_ms = chunk_length_min * 60 * 1000
            num_chunks = math.ceil(len(audio) / chunk_length_ms)
            
            full_result = {"segments": []}
            
            yield f"Audio extracted. Splitting into {num_chunks} chunk(s) of {chunk_length_min} min...", None
            
            for i in range(num_chunks):
                start_ms = i * chunk_length_ms
                end_ms = start_ms + chunk_length_ms
                chunk = audio[start_ms:end_ms]
                
                chunk_path = os.path.join(temp_dir, f"chunk_{i}.wav")
                chunk.export(chunk_path, format="wav")

                yield f"Transcribing chunk {i+1}/{num_chunks}...", None

                # Determine if word-level timestamps are needed
                should_get_word_timestamps = (transcription_mode in ["Word-level", "Word-level Advanced"])

                # Transcribe the chunk
                try:
                    result = model.transcribe(
                        chunk_path, 
                        word_timestamps=should_get_word_timestamps,
                        fp16=False # Set to False for CPU-only inference
                    )
                except Exception as e:
                    # Clean up and report error
                    del model
                    gc.collect()
                    return f"Error during transcription of chunk {i+1}: {e}", None

                # --- Timestamp Correction ---
                # Add the chunk's start time to all timestamps in the result
                time_offset_s = start_ms / 1000.0
                
                for segment in result["segments"]:
                    segment["start"] += time_offset_s
                    segment["end"] += time_offset_s
                    
                    if "words" in segment:
                        for word_info in segment["words"]:
                            word_info["start"] += time_offset_s
                            word_info["end"] += time_offset_s
                            
                    full_result["segments"].append(segment)

                # Clean up the chunk file immediately
                os.remove(chunk_path)
            
            # Clean up the model from memory to be safe
            del model
            gc.collect()

            # --- New: Process for Advanced Mode ---
            if transcription_mode == "Word-level Advanced":
                yield "Processing advanced word-level grouping...", None
                full_result = process_advanced_segments(full_result, max_words)

            yield "All chunks transcribed. Generating SRT file...", None

            # Generate the final SRT file from the combined results
            # For Advanced mode, force segment-level generation (grouped lines)
            srt_mode = "segment" if transcription_mode == "Word-level Advanced" else transcription_mode
            if transcription_mode == "Word-level":
                srt_mode = "word"
            srt_output = generate_srt_from_result(full_result, srt_mode)
            
            # Create a final SRT file in the temp directory to be returned by Gradio
            srt_file_path = os.path.join(temp_dir, "output.srt")
            with open(srt_file_path, "w", encoding="utf-8") as srt_file:
                srt_file.write(srt_output)

            yield "Done!", srt_file_path

        except Exception as e:
            return f"Error: {e}", None

# --- Gradio UI ---

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # Whisper Video Transcriber πŸŽ₯ -> πŸ“
        Upload a video, provide a Google Drive zip URL, choose your settings, and get a timed SRT subtitle file.
        This app handles large videos by automatically splitting them into manageable chunks.
        """
    )
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Input Source (choose one):")
            video_input = gr.Video(label="Upload Video File")
            gr.Markdown("**OR**")
            drive_url_input = gr.Textbox(
                label="Google Drive Zip URL", 
                placeholder="https://drive.google.com/file/d/your-file-id/view?usp=sharing",
                info="Paste a public Google Drive link to a zip file containing video(s)"
            )
            
            gr.Markdown("### Settings:")
            model_name = gr.Radio(
                ["tiny.en", "base.en"], 
                label="Whisper Model", 
                value="base.en",
                info="`tiny.en` is faster, `base.en` is more accurate."
            )
            
            transcription_mode = gr.Radio(
                ["Segment-level", "Word-level", "Word-level Advanced"],  # Added new mode
                label="Transcription Granularity",
                value="Segment-level",
                info="Word-level is more detailed but may be slightly slower. Word-level Advanced groups into lines with max words, splitting at punctuation."
            )
            
            chunk_length_min = gr.Slider(
                minimum=5, 
                maximum=20, 
                value=10, 
                step=1, 
                label="Chunk Length (minutes)",
                info="Shorter chunks use less RAM but may be slightly less accurate at boundaries."
            )
            
            max_words = gr.Slider(  # New input for max_words
                minimum=5, 
                maximum=30, 
                value=10, 
                step=1, 
                label="Max Words per Line (Advanced mode only)",
                info="For Word-level Advanced: Limits words per subtitle line, splitting intelligently at punctuation."
            )
            
            submit_button = gr.Button("Transcribe Video", variant="primary")

        with gr.Column():
            status_output = gr.Textbox(label="Status", interactive=False, lines=5)
            srt_output_file = gr.File(label="Download SRT File")

    submit_button.click(
        fn=transcribe_video,
        inputs=[video_input, drive_url_input, model_name, transcription_mode, chunk_length_min, max_words],  # Added drive_url_input
        outputs=[status_output, srt_output_file]
    )

    gr.Markdown(
        """
        ### How to Use
        1.  **Choose input method:** Either upload a video file OR provide a Google Drive zip URL (not both).
        2.  **For Google Drive:** Share your zip file publicly and paste the link. The zip should contain video files.
        3.  **Select a Whisper model.** For English, `base.en` provides a great balance of speed and accuracy.
        4.  **Choose the granularity.** 'Segment-level' is good for standard subtitles. 'Word-level' is great for karaoke-style highlighting. 'Word-level Advanced' groups into optimized subtitle lines.
        5.  **Click 'Transcribe Video'.** The status box will show the progress.
        6.  **Download the SRT file** when the process is complete. You can open this file in any text editor or load it into a video player like VLC.
        
        ### Google Drive Setup
        - Upload your video files in a zip archive to Google Drive
        - Right-click the zip file β†’ Share β†’ Change to "Anyone with the link"
        - Copy and paste the share link into the URL field above
        """
    )

if __name__ == "__main__":
    demo.launch(debug=True)