from diffusers import DiffusionPipeline import gradio as gr import sys generator = DiffusionPipeline.from_pretrained("kaveh/wsi_generator") def generate(n_samples=1): images = [] for i in range(n_samples): image = generator().images[0] images.append(image) return images with gr.Blocks() as demo: with gr.Column(variant="panel"): with gr.Row(variant="compact"): n_s = gr.Slider(1, 4, label='Number of Samples', value=1, step=1.0, show_label=True) btn = gr.Button("Generate image").style(full_width=False) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery").style(columns=[2], rows=[2], object_fit="contain", height="auto", preview=True) btn.click(generate, n_s, gallery) demo.launch()