import gradio as gr import os import torch import numpy as np import random from huggingface_hub import login, HfFolder from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, TextIteratorStreamer from scipy.special import softmax import logging import spaces from threading import Thread from collections.abc import Iterator import csv # Increase CSV field size limit csv.field_size_limit(1000000) # Or an even larger value if needed # Setup logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s') # Set a seed for reproducibility seed = 42 np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # Login to Hugging Face token = os.getenv("hf_token") HfFolder.save_token(token) login(token) # --- Quality Prediction Model Setup --- model_paths = [ 'karths/binary_classification_train_test', "karths/binary_classification_train_process", "karths/binary_classification_train_infrastructure", "karths/binary_classification_train_documentation", "karths/binary_classification_train_design", "karths/binary_classification_train_defect", "karths/binary_classification_train_code", "karths/binary_classification_train_build", "karths/binary_classification_train_automation", "karths/binary_classification_train_people", "karths/binary_classification_train_architecture", ] quality_mapping = { 'binary_classification_train_test': 'Test', 'binary_classification_train_process': 'Process', 'binary_classification_train_infrastructure': 'Infrastructure', 'binary_classification_train_documentation': 'Documentation', 'binary_classification_train_design': 'Design', 'binary_classification_train_defect': 'Defect', 'binary_classification_train_code': 'Code', 'binary_classification_train_build': 'Build', 'binary_classification_train_automation': 'Automation', 'binary_classification_train_people': 'People', 'binary_classification_train_architecture': 'Architecture' } # Pre-load models and tokenizer for quality prediction tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths} def get_quality_name(model_name): return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality") @spaces.GPU def model_prediction(model, text, device): model.to(device) model.eval() inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = softmax(logits.cpu().numpy(), axis=1) avg_prob = np.mean(probs[:, 1]) return avg_prob # --- Llama 3.2 3B Model Setup --- LLAMA_MAX_MAX_NEW_TOKENS = 2048 LLAMA_DEFAULT_MAX_NEW_TOKENS = 1024 LLAMA_MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) llama_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Explicitly define device llama_model_id = "meta-llama/Llama-3.2-3B-Instruct" llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_id) llama_model = AutoModelForCausalLM.from_pretrained( llama_model_id, device_map="auto", # Automatically distribute model across devices torch_dtype=torch.bfloat16, ) llama_model.eval() # --- IMPORTANT: Set Pad Token --- # Llama3 does *not* have a default pad token. We *must* set one. # Using the EOS token as the PAD token is a common and recommended practice. if llama_tokenizer.pad_token is None: llama_tokenizer.pad_token = llama_tokenizer.eos_token @spaces.GPU(duration=90) def llama_generate( message: str, max_new_tokens: int = LLAMA_DEFAULT_MAX_NEW_TOKENS, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: inputs = llama_tokenizer(message, return_tensors="pt", padding=True, truncation=True, max_length=LLAMA_MAX_INPUT_TOKEN_LENGTH).to(llama_model.device) #The line above was changed to add attention mask if inputs.input_ids.shape[1] > LLAMA_MAX_INPUT_TOKEN_LENGTH: inputs.input_ids = inputs.input_ids[:, -LLAMA_MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {LLAMA_MAX_INPUT_TOKEN_LENGTH} tokens.") streamer = TextIteratorStreamer(llama_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( inputs, # Pass the entire inputs dictionary streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=llama_model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) def generate_explanation(issue_text, top_qualities): """Generates an explanation using Llama 3.2 3B.""" if not top_qualities: return "No explanation available as no quality tags were predicted." prompt = f""" Given the following issue description: --- {issue_text} --- Explain why this issue might be classified under the following quality categories: {', '.join([q[0] for q in top_qualities])}. Provide a concise explanation for each category, relating it back to the issue description. """ explanation = "" try: for chunk in llama_generate(prompt): explanation += chunk # Accumulate generated text except Exception as e: logging.error(f"Error during Llama generation: {e}") return "An error occurred while generating the explanation." return explanation def main_interface(text): if not text.strip(): return "
No text provided. Please enter a valid issue description.
", "", "" if len(text) < 30: return "
Text is less than 30 characters.
", "", "" device = "cuda" if torch.cuda.is_available() else "cpu" results = [] for model_path, model in models.items(): quality_name = get_quality_name(model_path) avg_prob = model_prediction(model, text, device) if avg_prob >= 0.95: results.append((quality_name, avg_prob)) logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}") if not results: return "
No recommendation. Prediction probability is below the threshold.
", "", "" top_qualities = sorted(results, key=lambda x: x[1], reverse=True)[:3] output_html = render_html_output(top_qualities) # Generate explanation using the top qualities and the original input text explanation = generate_explanation(text, top_qualities) return output_html, "", explanation # Return explanation as the third output def render_html_output(top_qualities): styles = """ """ html_content = "" ranking_labels = ['Top 1 Prediction', 'Top 2 Prediction', 'Top 3 Prediction'] top_n = min(len(top_qualities), len(ranking_labels)) for i in range(top_n): quality, prob = top_qualities[i] html_content += f"""
{ranking_labels[i]} {quality}
""" return styles + html_content example_texts = [ ["The algorithm does not accurately distinguish between the positive and negative classes during edge cases.\n\nEnvironment: Production\nReproduction: Run the classifier on the test dataset with known edge cases."], ["The regression tests do not cover scenarios involving concurrent user sessions.\n\nEnvironment: Test automation suite\nReproduction: Update the test scripts to include tests for concurrent sessions."], ["There is frequent miscommunication between the development and QA teams regarding feature specifications.\n\nEnvironment: Inter-team meetings\nReproduction: Audit recent communication logs and meeting notes between the teams."], ["The service-oriented architecture does not effectively isolate failures, leading to cascading failures across services.\n\nEnvironment: Microservices architecture\nReproduction: Simulate a service failure and observe the impact on other services."] ] interface = gr.Interface( fn=main_interface, inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"), outputs=[ gr.HTML(label="Prediction Output"), gr.Textbox(label="Predictions", visible=False), gr.Textbox(label="Explanation", lines=5) # Added Textbox for explanation ], title="QualityTagger", description="This tool classifies text into different quality domains such as Security, Usability, etc., and provides explanations.", examples=example_texts ) interface.launch(share=True)