# import streamlit as st # from transformers import pipeline # summarizer = pipeline("summarization") # # pipe=pipeline("sentiment-analysis") # # col1, col2 = st.columns(2) # # with col1: # # x=st.button("Sentiment Analysis") # # with col2: # # y=st.button("Text Summarization") # # if x: # # t=st.text_input("Enter the Text") # # st.write(pipe(t)) # # if y: # t1=st.text_input("Enter the Text for Summarization") # st.write(summarizer(t1)) from transformers import AutoTokenizer, AutoModel import streamlit as st tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1") model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1") # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("feature-extraction", model="llmware/industry-bert-insurance-v0.1") t=st.text_input("Enter the Text") st.write(pipe(t))