import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("karanzrk/bert-Causal-QA") from transformers import pipeline generator = pipeline('text-generation', model = 'karanzrk/bert-Causal-QA', tokenizer="bert-base-uncased", max_length = 128) # generator("Hello, I'm a language model", max_length = 30, num_return_sequences=3) # def respond( # message, # max_tokens, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="Question: ", label="System message"), # gr.Slider(minimum=1, maximum=128, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) def inference(text): # classifier = pipeline("text-classification", model="karanzrk/essayl0") text = "Question: " + text output = generator(text) answer = output[0] return answer # launcher = gr.Interface( # fn=inference, # inputs=gr.Textbox(lines=5, placeholder="Essay here...."), # outputs="text" # ) with gr.Blocks() as demo: gr.Markdown( """ # Welcome to bert-demo Ask your question """ ) inputs = gr.Textbox(label="Input Box",lines = 5, placeholder="Question: ") button = gr.Button("Ask!") output = gr.Textbox(label="Output Box") button.click(fn=inference, inputs=inputs, outputs = output, api_name="Autograde") demo.launch() if __name__ == "__main__": demo.launch()