Commit
·
3c513eb
1
Parent(s):
05274f2
Update and improve capex figures
Browse files- README.md +0 -2
- big_five_capex.jsonl → ai_cloud_companies_capex.jsonl +40 -40
- app.py +102 -61
README.md
CHANGED
@@ -8,5 +8,3 @@ sdk_version: 4.36.1
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
|
big_five_capex.jsonl → ai_cloud_companies_capex.jsonl
RENAMED
@@ -1,40 +1,40 @@
|
|
1 |
-
{"Quarter": "2015 Q3", "Microsoft": 1356, "Google": 2406, "Meta": 780, "Amazon": 1195}
|
2 |
-
{"Quarter": "2015 Q4", "Microsoft": 2024, "Google": 2102, "Meta": 692, "Amazon": 1309}
|
3 |
-
{"Quarter": "2016 Q1", "Microsoft": 2308, "Google": 2444, "Meta": 1132, "Amazon": 1179}
|
4 |
-
{"Quarter": "2016 Q2", "Microsoft": 2655, "Google": 2136, "Meta": 995, "Amazon": 1711}
|
5 |
-
{"Quarter": "2016 Q3", "Microsoft": 2163, "Google": 2554, "Meta": 1095, "Amazon": 1841}
|
6 |
-
{"Quarter": "2016 Q4", "Microsoft": 1988, "Google": 3078, "Meta": 1269, "Amazon": 3073}
|
7 |
-
{"Quarter": "2017 Q1", "Microsoft": 1695, "Google": 2508, "Meta": 1271, "Amazon": 2148}
|
8 |
-
{"Quarter": "2017 Q2", "Microsoft": 2283, "Google": 2831, "Meta": 1444, "Amazon": 3113}
|
9 |
-
{"Quarter": "2017 Q3", "Microsoft": 2132, "Google": 3538, "Meta": 1755, "Amazon": 3074}
|
10 |
-
{"Quarter": "2017 Q4", "Microsoft": 2586, "Google": 4307, "Meta": 2263, "Amazon": 3619}
|
11 |
-
{"Quarter": "2018 Q1", "Microsoft": 2934, "Google": 7299, "Meta": 2812, "Amazon": 3098}
|
12 |
-
{"Quarter": "2018 Q2", "Microsoft": 3980, "Google": 5477, "Meta": 3460, "Amazon": 3243}
|
13 |
-
{"Quarter": "2018 Q3", "Microsoft": 3602, "Google": 5282, "Meta": 3342, "Amazon": 3352}
|
14 |
-
{"Quarter": "2018 Q4", "Microsoft": 3707, "Google": 7081, "Meta": 4301, "Amazon": 3734}
|
15 |
-
{"Quarter": "2019 Q1", "Microsoft": 2565, "Google": 4638, "Meta": 3837, "Amazon": 3290}
|
16 |
-
{"Quarter": "2019 Q2", "Microsoft": 4051, "Google": 6126, "Meta": 3633, "Amazon": 3562}
|
17 |
-
{"Quarter": "2019 Q3", "Microsoft": 3385, "Google": 6732, "Meta": 3532, "Amazon": 4697}
|
18 |
-
{"Quarter": "2019 Q4", "Microsoft": 3545, "Google": 6052, "Meta": 4100, "Amazon": 5312}
|
19 |
-
{"Quarter": "2020 Q1", "Microsoft": 3767, "Google": 6005, "Meta": 3558, "Amazon": 6795}
|
20 |
-
{"Quarter": "2020 Q2", "Microsoft": 4744, "Google": 5391, "Meta": 3255, "Amazon": 7459}
|
21 |
-
{"Quarter": "2020 Q3", "Microsoft": 4907, "Google": 5406, "Meta": 3689, "Amazon": 11063}
|
22 |
-
{"Quarter": "2020 Q4", "Microsoft": 4174, "Google": 5479, "Meta": 4613, "Amazon": 14823}
|
23 |
-
{"Quarter": "2021 Q1", "Microsoft": 5089, "Google": 5942, "Meta": 4303, "Amazon": 12082}
|
24 |
-
{"Quarter": "2021 Q2", "Microsoft": 6452, "Google": 5496, "Meta": 4641, "Amazon": 14288}
|
25 |
-
{"Quarter": "2021 Q3", "Microsoft": 5810, "Google": 6819, "Meta": 4346, "Amazon": 15748}
|
26 |
-
{"Quarter": "2021 Q4", "Microsoft": 5865, "Google": 6383, "Meta": 5400, "Amazon": 18935}
|
27 |
-
{"Quarter": "2022 Q1", "Microsoft": 5340, "Google": 9786, "Meta": 5441, "Amazon": 14951}
|
28 |
-
{"Quarter": "2022 Q2", "Microsoft": 6871, "Google": 6828, "Meta": 7572, "Amazon": 15724}
|
29 |
-
{"Quarter": "2022 Q3", "Microsoft": 6283, "Google": 7276, "Meta": 9375, "Amazon": 16378}
|
30 |
-
{"Quarter": "2022 Q4", "Microsoft": 6274, "Google": 7595, "Meta": 9043, "Amazon": 16592}
|
31 |
-
{"Quarter": "2023 Q1", "Microsoft": 6607, "Google": 6289, "Meta": 6823, "Amazon": 14207}
|
32 |
-
{"Quarter": "2023 Q2", "Microsoft": 8943, "Google": 6888, "Meta": 6134, "Amazon": 11455}
|
33 |
-
{"Quarter": "2023 Q3", "Microsoft": 9917, "Google": 8055, "Meta": 6543, "Amazon": 12479}
|
34 |
-
{"Quarter": "2023 Q4", "Microsoft": 9735, "Google": 11019, "Meta": 7665, "Amazon": 14588}
|
35 |
-
{"Quarter": "2024 Q1", "Microsoft": 10952, "Google": 12012, "Meta": 6400, "Amazon": 14925}
|
36 |
-
{"Quarter": "2024 Q2", "Microsoft": 13873, "Google": 13186, "Meta": 8173, "Amazon": 17620}
|
37 |
-
{"Quarter": "2024 Q3", "Microsoft": 14923, "Google": 13016, "Meta": 8258, "Amazon": 22620}
|
38 |
-
{"Quarter": "2024 Q4", "Microsoft": 15804, "Google": 14276, "Meta": 14425, "Amazon": 27834}
|
39 |
-
{"Quarter": "2025 Q1", "Microsoft": 16745, "Google": 17197, "Meta": 12941, "Amazon": 25019}
|
40 |
-
{"Quarter": "2025 Q2", "Microsoft": 17079, "Google": 22446, "Meta": 16538, "Amazon": 0}
|
|
|
1 |
+
{"Quarter": "2015 Q3", "Microsoft": 1356, "Google": 2406, "Meta": 780, "Amazon": 1195, "Oracle": 446, "CoreWeave": 0}
|
2 |
+
{"Quarter": "2015 Q4", "Microsoft": 2024, "Google": 2102, "Meta": 692, "Amazon": 1309, "Oracle": 195, "CoreWeave": 0}
|
3 |
+
{"Quarter": "2016 Q1", "Microsoft": 2308, "Google": 2444, "Meta": 1132, "Amazon": 1179, "Oracle": 368, "CoreWeave": 0}
|
4 |
+
{"Quarter": "2016 Q2", "Microsoft": 2655, "Google": 2136, "Meta": 995, "Amazon": 1711, "Oracle": 180, "CoreWeave": 0}
|
5 |
+
{"Quarter": "2016 Q3", "Microsoft": 2163, "Google": 2554, "Meta": 1095, "Amazon": 1841, "Oracle": 299, "CoreWeave": 0}
|
6 |
+
{"Quarter": "2016 Q4", "Microsoft": 1988, "Google": 3078, "Meta": 1269, "Amazon": 3073, "Oracle": 757, "CoreWeave": 0}
|
7 |
+
{"Quarter": "2017 Q1", "Microsoft": 1695, "Google": 2508, "Meta": 1271, "Amazon": 2148, "Oracle": 440, "CoreWeave": 0}
|
8 |
+
{"Quarter": "2017 Q2", "Microsoft": 2283, "Google": 2831, "Meta": 1444, "Amazon": 3113, "Oracle": 525, "CoreWeave": 0}
|
9 |
+
{"Quarter": "2017 Q3", "Microsoft": 2132, "Google": 3538, "Meta": 1755, "Amazon": 3074, "Oracle": 473, "CoreWeave": 0}
|
10 |
+
{"Quarter": "2017 Q4", "Microsoft": 2586, "Google": 4307, "Meta": 2263, "Amazon": 3619, "Oracle": 599, "CoreWeave": 0}
|
11 |
+
{"Quarter": "2018 Q1", "Microsoft": 2934, "Google": 7299, "Meta": 2812, "Amazon": 3098, "Oracle": 286, "CoreWeave": 0}
|
12 |
+
{"Quarter": "2018 Q2", "Microsoft": 3980, "Google": 5477, "Meta": 3460, "Amazon": 3243, "Oracle": 378, "CoreWeave": 0}
|
13 |
+
{"Quarter": "2018 Q3", "Microsoft": 3602, "Google": 5282, "Meta": 3342, "Amazon": 3352, "Oracle": 383, "CoreWeave": 0}
|
14 |
+
{"Quarter": "2018 Q4", "Microsoft": 3707, "Google": 7081, "Meta": 4301, "Amazon": 3734, "Oracle": 421, "CoreWeave": 0}
|
15 |
+
{"Quarter": "2019 Q1", "Microsoft": 2565, "Google": 4638, "Meta": 3837, "Amazon": 3290, "Oracle": 443, "CoreWeave": 0}
|
16 |
+
{"Quarter": "2019 Q2", "Microsoft": 4051, "Google": 6126, "Meta": 3633, "Amazon": 3562, "Oracle": 413, "CoreWeave": 0}
|
17 |
+
{"Quarter": "2019 Q3", "Microsoft": 3385, "Google": 6732, "Meta": 3532, "Amazon": 4697, "Oracle": 386, "CoreWeave": 0}
|
18 |
+
{"Quarter": "2019 Q4", "Microsoft": 3545, "Google": 6052, "Meta": 4100, "Amazon": 5312, "Oracle": 349, "CoreWeave": 0}
|
19 |
+
{"Quarter": "2020 Q1", "Microsoft": 3767, "Google": 6005, "Meta": 3558, "Amazon": 6795, "Oracle": 396, "CoreWeave": 0}
|
20 |
+
{"Quarter": "2020 Q2", "Microsoft": 4744, "Google": 5391, "Meta": 3255, "Amazon": 7459, "Oracle": 433, "CoreWeave": 0}
|
21 |
+
{"Quarter": "2020 Q3", "Microsoft": 4907, "Google": 5406, "Meta": 3689, "Amazon": 11063, "Oracle": 436, "CoreWeave": 0}
|
22 |
+
{"Quarter": "2020 Q4", "Microsoft": 4174, "Google": 5479, "Meta": 4613, "Amazon": 14823, "Oracle": 568, "CoreWeave": 0}
|
23 |
+
{"Quarter": "2021 Q1", "Microsoft": 5089, "Google": 5942, "Meta": 4303, "Amazon": 12082, "Oracle": 414, "CoreWeave": 0}
|
24 |
+
{"Quarter": "2021 Q2", "Microsoft": 6452, "Google": 5496, "Meta": 4641, "Amazon": 14288, "Oracle": 717, "CoreWeave": 0}
|
25 |
+
{"Quarter": "2021 Q3", "Microsoft": 5810, "Google": 6819, "Meta": 4346, "Amazon": 15748, "Oracle": 1062, "CoreWeave": 0}
|
26 |
+
{"Quarter": "2021 Q4", "Microsoft": 5865, "Google": 6383, "Meta": 5400, "Amazon": 18935, "Oracle": 925, "CoreWeave": 0}
|
27 |
+
{"Quarter": "2022 Q1", "Microsoft": 5340, "Google": 9786, "Meta": 5441, "Amazon": 14951, "Oracle": 1101, "CoreWeave": 18}
|
28 |
+
{"Quarter": "2022 Q2", "Microsoft": 6871, "Google": 6828, "Meta": 7572, "Amazon": 15724, "Oracle": 1423, "CoreWeave": 18}
|
29 |
+
{"Quarter": "2022 Q3", "Microsoft": 6283, "Google": 7276, "Meta": 9375, "Amazon": 16378, "Oracle": 1719, "CoreWeave": 18}
|
30 |
+
{"Quarter": "2022 Q4", "Microsoft": 6274, "Google": 7595, "Meta": 9043, "Amazon": 16592, "Oracle": 2435, "CoreWeave": 18}
|
31 |
+
{"Quarter": "2023 Q1", "Microsoft": 6607, "Google": 6289, "Meta": 6823, "Amazon": 14207, "Oracle": 2628, "CoreWeave": 588}
|
32 |
+
{"Quarter": "2023 Q2", "Microsoft": 8943, "Google": 6888, "Meta": 6134, "Amazon": 11455, "Oracle": 1913, "CoreWeave": 588}
|
33 |
+
{"Quarter": "2023 Q3", "Microsoft": 9917, "Google": 8055, "Meta": 6543, "Amazon": 12479, "Oracle": 1314, "CoreWeave": 588}
|
34 |
+
{"Quarter": "2023 Q4", "Microsoft": 9735, "Google": 11019, "Meta": 7665, "Amazon": 14588, "Oracle": 1080, "CoreWeave": 1180}
|
35 |
+
{"Quarter": "2024 Q1", "Microsoft": 10952, "Google": 12012, "Meta": 6400, "Amazon": 14925, "Oracle": 1674, "CoreWeave": 1742}
|
36 |
+
{"Quarter": "2024 Q2", "Microsoft": 13873, "Google": 13186, "Meta": 8173, "Amazon": 17620, "Oracle": 2798, "CoreWeave": 1731}
|
37 |
+
{"Quarter": "2024 Q3", "Microsoft": 14923, "Google": 13016, "Meta": 8258, "Amazon": 22620, "Oracle": 2303, "CoreWeave": 1731}
|
38 |
+
{"Quarter": "2024 Q4", "Microsoft": 15804, "Google": 14276, "Meta": 14425, "Amazon": 27834, "Oracle": 3970, "CoreWeave": 3498}
|
39 |
+
{"Quarter": "2025 Q1", "Microsoft": 16745, "Google": 17197, "Meta": 12941, "Amazon": 25019, "Oracle": 5862, "CoreWeave": 1407}
|
40 |
+
{"Quarter": "2025 Q2", "Microsoft": 17079, "Google": 22446, "Meta": 16538, "Amazon": 32183, "Oracle": 9080, "CoreWeave": 0}
|
app.py
CHANGED
@@ -5,14 +5,14 @@ import gradio as gr
|
|
5 |
import plotly.graph_objects as go
|
6 |
|
7 |
|
8 |
-
def
|
9 |
# Read data from the JSON Lines file.
|
10 |
-
with open("
|
11 |
data = [json.loads(line) for line in file if line.strip()]
|
12 |
|
13 |
quarters: list[str] = [entry["Quarter"] for entry in data]
|
14 |
-
companies = ['Microsoft', 'Google', 'Meta', 'Amazon']
|
15 |
-
colors = ['#80bb00', '#ee161f', '#0065e3', '#ff6200']
|
16 |
|
17 |
x_positions = list(range(len(quarters)))
|
18 |
|
@@ -29,7 +29,7 @@ def create_big_five_capex_plot() -> go.Figure:
|
|
29 |
fig = go.Figure(data=traces)
|
30 |
fig.update_layout(
|
31 |
barmode="stack",
|
32 |
-
title="Capital Expenditures
|
33 |
xaxis_title="Quarter",
|
34 |
yaxis_title="Capital Expenditures (Millions USD)",
|
35 |
xaxis=dict(
|
@@ -40,24 +40,50 @@ def create_big_five_capex_plot() -> go.Figure:
|
|
40 |
height=800
|
41 |
)
|
42 |
|
43 |
-
# Calculate the x position for the vertical dotted line.
|
44 |
# We want the line drawn between "2023 Q1" and "2023 Q2".
|
45 |
try:
|
46 |
idx_q1 = quarters.index("2023 Q1")
|
47 |
idx_q2 = quarters.index("2023 Q2")
|
48 |
-
|
49 |
except ValueError:
|
50 |
# Fall back if quarters not found.
|
51 |
-
|
52 |
|
53 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
fig.add_shape(
|
55 |
type="line",
|
56 |
xref="x",
|
57 |
yref="paper",
|
58 |
-
x0=
|
59 |
y0=0,
|
60 |
-
x1=
|
61 |
y1=1,
|
62 |
line=dict(
|
63 |
color="black",
|
@@ -66,9 +92,9 @@ def create_big_five_capex_plot() -> go.Figure:
|
|
66 |
)
|
67 |
)
|
68 |
|
69 |
-
# Add an annotation label above the vertical line.
|
70 |
fig.add_annotation(
|
71 |
-
x=
|
72 |
y=1.05, # place just above the top of the plotting area
|
73 |
xref="x",
|
74 |
yref="paper",
|
@@ -81,6 +107,21 @@ def create_big_five_capex_plot() -> go.Figure:
|
|
81 |
align="center"
|
82 |
)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
return fig
|
85 |
|
86 |
|
@@ -333,6 +374,52 @@ with gr.Blocks() as demo:
|
|
333 |
zeroeval_crux_markdown: gr.Markdown = gr.Markdown(
|
334 |
value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)"""
|
335 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
with gr.Tab("OpenCompass", visible=False):
|
337 |
opencompass_plot: gr.Plot = gr.Plot()
|
338 |
opencompass_markdown: gr.Markdown = gr.Markdown(
|
@@ -403,63 +490,17 @@ with gr.Blocks() as demo:
|
|
403 |
cybench_markdown: gr.Markdown = gr.Markdown(
|
404 |
value="""Source: [Cybench Leaderboard](https://hal.cs.princeton.edu/cybench)"""
|
405 |
)
|
406 |
-
with gr.Tab("MultiChallenge", visible=False):
|
407 |
-
multichallenge_plot: gr.Plot = gr.Plot()
|
408 |
-
multichallenge_markdown: gr.Markdown = gr.Markdown(
|
409 |
-
value="""Source: [SEAL Leaderboard: MultiChallenge](https://scale.com/leaderboard/multichallenge)"""
|
410 |
-
)
|
411 |
-
with gr.Tab("VISTA", visible=False):
|
412 |
-
vista_plot: gr.Plot = gr.Plot()
|
413 |
-
vista_markdown: gr.Markdown = gr.Markdown(
|
414 |
-
value="""Source: [SEAL Leaderboard: Visual-Language Understanding](https://scale.com/leaderboard/visual_language_understanding)"""
|
415 |
-
)
|
416 |
-
with gr.Tab("ToolComp", visible=False):
|
417 |
-
with gr.Tab("Enterprise"):
|
418 |
-
toolcomp_enterprise_plot: gr.Plot = gr.Plot()
|
419 |
-
toolcomp_enterprise_markdown: gr.Markdown = gr.Markdown(
|
420 |
-
value="""Source: [SEAL Leaderboard: Agentic Tool Use (Enterprise)](https://scale.com/leaderboard/tool_use_enterprise)"""
|
421 |
-
)
|
422 |
-
with gr.Tab("Chat"):
|
423 |
-
toolcomp_chat_plot: gr.Plot = gr.Plot()
|
424 |
-
toolcomp_chat_markdown: gr.Markdown = gr.Markdown(
|
425 |
-
value="""Source: [SEAL Leaderboard: Agentic Tool Use (Chat)](https://scale.com/leaderboard/tool_use_chat)"""
|
426 |
-
)
|
427 |
-
with gr.Tab("BFCL", visible=False):
|
428 |
-
bfcl_plot: gr.Plot = gr.Plot()
|
429 |
-
bfcl_markdown: gr.Markdown = gr.Markdown(
|
430 |
-
value="""Source: [BFCL Leaderboard](https://gorilla.cs.berkeley.edu/leaderboard.html)"""
|
431 |
-
)
|
432 |
-
with gr.Tab("EvalPlus", visible=False):
|
433 |
-
evalplus_plot: gr.Plot = gr.Plot()
|
434 |
-
evalplus_markdown: gr.Markdown = gr.Markdown(
|
435 |
-
value="""Source: [EvalPlus Leaderboard](https://evalplus.github.io/leaderboard.html)"""
|
436 |
-
)
|
437 |
-
with gr.Tab("Aider Polyglot", visible=False):
|
438 |
-
aider_plot: gr.Plot = gr.Plot()
|
439 |
-
aider_markdown: gr.Markdown = gr.Markdown(
|
440 |
-
value="""Source: [Aider LLM Leaderboards](https://aider.chat/docs/leaderboards/)"""
|
441 |
-
)
|
442 |
with gr.Tab("QuALITY", visible=False):
|
443 |
quality_plot: gr.Plot = gr.Plot()
|
444 |
quality_markdown: gr.Markdown = gr.Markdown(
|
445 |
value="""Source: [QuALITY Leaderboard](https://nyu-mll.github.io/quality/)"""
|
446 |
)
|
447 |
-
with gr.Tab("MMVU", visible=False):
|
448 |
-
mmvu_plot: gr.Plot = gr.Plot()
|
449 |
-
mmvu_markdown: gr.Markdown = gr.Markdown(
|
450 |
-
value="""Source: [MMVU Leaderboard](https://mmvu-benchmark.github.io/#leaderboard)"""
|
451 |
-
)
|
452 |
-
with gr.Tab("PhysBench", visible=False):
|
453 |
-
physbench_plot: gr.Plot = gr.Plot()
|
454 |
-
physbench_markdown: gr.Markdown = gr.Markdown(
|
455 |
-
value="""Source: [PhysBench Leaderboard](https://physbench.github.io/#leaderboard)"""
|
456 |
-
)
|
457 |
with gr.Tab("Finance") as finance_tab:
|
458 |
with gr.Tab("Big Tech Capex") as big_five_capex_tab:
|
459 |
big_five_capex_plot: gr.Plot = gr.Plot()
|
460 |
with gr.Tab("NVIDIA Revenue", visible=False) as nvidia_revenue:
|
461 |
nvidia_revenue_plot: gr.Plot = gr.Plot()
|
462 |
-
big_five_capex_tab.select(fn=
|
463 |
arc_agi_public_eval_tab.select(fn=create_simple_plot,
|
464 |
inputs=[gr.State("arc_agi_leaderboard.jsonl"),
|
465 |
gr.State(
|
@@ -490,7 +531,7 @@ with gr.Blocks() as demo:
|
|
490 |
gr.State(0), gr.State(100),
|
491 |
gr.State({"MTurkers": 77})],
|
492 |
outputs=arc_agi_semi_private_eval_plot)
|
493 |
-
finance_tab.select(fn=
|
494 |
simple_bench_tab.select(fn=create_simple_plot,
|
495 |
inputs=[gr.State("simple_bench_leaderboard.jsonl"),
|
496 |
gr.State("Simple Bench Score"),
|
|
|
5 |
import plotly.graph_objects as go
|
6 |
|
7 |
|
8 |
+
def create_ai_cloud_companies_plot() -> go.Figure:
|
9 |
# Read data from the JSON Lines file.
|
10 |
+
with open("ai_cloud_companies_capex.jsonl", "r") as file:
|
11 |
data = [json.loads(line) for line in file if line.strip()]
|
12 |
|
13 |
quarters: list[str] = [entry["Quarter"] for entry in data]
|
14 |
+
companies = ['Microsoft', 'Google', 'Meta', 'Amazon', 'Oracle', 'CoreWeave']
|
15 |
+
colors = ['#80bb00', '#ee161f', '#0065e3', '#ff6200', '#f80000', '#4b8bbe']
|
16 |
|
17 |
x_positions = list(range(len(quarters)))
|
18 |
|
|
|
29 |
fig = go.Figure(data=traces)
|
30 |
fig.update_layout(
|
31 |
barmode="stack",
|
32 |
+
title="Capital Expenditures (PP&E) of AI Cloud Companies",
|
33 |
xaxis_title="Quarter",
|
34 |
yaxis_title="Capital Expenditures (Millions USD)",
|
35 |
xaxis=dict(
|
|
|
40 |
height=800
|
41 |
)
|
42 |
|
43 |
+
# Calculate the x position for the AI race vertical dotted line.
|
44 |
# We want the line drawn between "2023 Q1" and "2023 Q2".
|
45 |
try:
|
46 |
idx_q1 = quarters.index("2023 Q1")
|
47 |
idx_q2 = quarters.index("2023 Q2")
|
48 |
+
ai_race_vline_x = (idx_q1 + idx_q2) / 2 # position midway between the two quarters
|
49 |
except ValueError:
|
50 |
# Fall back if quarters not found.
|
51 |
+
ai_race_vline_x = 0
|
52 |
|
53 |
+
# Calculate the x position for the COVID-19 pandemic vertical dotted line.
|
54 |
+
# We want the line drawn between "2020 Q1" and "2020 Q2".
|
55 |
+
try:
|
56 |
+
covid_idx_q1 = quarters.index("2020 Q1")
|
57 |
+
covid_idx_q2 = quarters.index("2020 Q2")
|
58 |
+
covid_vline_x = (covid_idx_q1 + covid_idx_q2) / 2 # position midway between the two quarters
|
59 |
+
except ValueError:
|
60 |
+
# Fall back if quarters not found.
|
61 |
+
covid_vline_x = 0
|
62 |
+
|
63 |
+
# Add a vertical dotted line for AI race spanning the full height
|
64 |
+
fig.add_shape(
|
65 |
+
type="line",
|
66 |
+
xref="x",
|
67 |
+
yref="paper",
|
68 |
+
x0=ai_race_vline_x,
|
69 |
+
y0=0,
|
70 |
+
x1=ai_race_vline_x,
|
71 |
+
y1=1,
|
72 |
+
line=dict(
|
73 |
+
color="black",
|
74 |
+
dash="dot",
|
75 |
+
width=2
|
76 |
+
)
|
77 |
+
)
|
78 |
+
|
79 |
+
# Add a vertical dotted line for COVID-19 pandemic spanning the full height
|
80 |
fig.add_shape(
|
81 |
type="line",
|
82 |
xref="x",
|
83 |
yref="paper",
|
84 |
+
x0=covid_vline_x,
|
85 |
y0=0,
|
86 |
+
x1=covid_vline_x,
|
87 |
y1=1,
|
88 |
line=dict(
|
89 |
color="black",
|
|
|
92 |
)
|
93 |
)
|
94 |
|
95 |
+
# Add an annotation label above the AI race vertical line.
|
96 |
fig.add_annotation(
|
97 |
+
x=ai_race_vline_x,
|
98 |
y=1.05, # place just above the top of the plotting area
|
99 |
xref="x",
|
100 |
yref="paper",
|
|
|
107 |
align="center"
|
108 |
)
|
109 |
|
110 |
+
# Add an annotation label above the COVID-19 pandemic vertical line.
|
111 |
+
fig.add_annotation(
|
112 |
+
x=covid_vline_x,
|
113 |
+
y=1.05,
|
114 |
+
xref="x",
|
115 |
+
yref="paper",
|
116 |
+
text="COVID-19 pandemic begins",
|
117 |
+
showarrow=False,
|
118 |
+
font=dict(
|
119 |
+
color="black",
|
120 |
+
size=12
|
121 |
+
),
|
122 |
+
align="center"
|
123 |
+
)
|
124 |
+
|
125 |
return fig
|
126 |
|
127 |
|
|
|
374 |
zeroeval_crux_markdown: gr.Markdown = gr.Markdown(
|
375 |
value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)"""
|
376 |
)
|
377 |
+
with gr.Tab("PhysBench", visible=False):
|
378 |
+
physbench_plot: gr.Plot = gr.Plot()
|
379 |
+
physbench_markdown: gr.Markdown = gr.Markdown(
|
380 |
+
value="""Source: [PhysBench Leaderboard](https://physbench.github.io/#leaderboard)"""
|
381 |
+
)
|
382 |
+
with gr.Tab("MMVU", visible=False):
|
383 |
+
mmvu_plot: gr.Plot = gr.Plot()
|
384 |
+
mmvu_markdown: gr.Markdown = gr.Markdown(
|
385 |
+
value="""Source: [MMVU Leaderboard](https://mmvu-benchmark.github.io/#leaderboard)"""
|
386 |
+
)
|
387 |
+
with gr.Tab("EvalPlus", visible=False):
|
388 |
+
evalplus_plot: gr.Plot = gr.Plot()
|
389 |
+
evalplus_markdown: gr.Markdown = gr.Markdown(
|
390 |
+
value="""Source: [EvalPlus Leaderboard](https://evalplus.github.io/leaderboard.html)"""
|
391 |
+
)
|
392 |
+
with gr.Tab("MultiChallenge", visible=False):
|
393 |
+
multichallenge_plot: gr.Plot = gr.Plot()
|
394 |
+
multichallenge_markdown: gr.Markdown = gr.Markdown(
|
395 |
+
value="""Source: [SEAL Leaderboard: MultiChallenge](https://scale.com/leaderboard/multichallenge)"""
|
396 |
+
)
|
397 |
+
with gr.Tab("VISTA", visible=False):
|
398 |
+
vista_plot: gr.Plot = gr.Plot()
|
399 |
+
vista_markdown: gr.Markdown = gr.Markdown(
|
400 |
+
value="""Source: [SEAL Leaderboard: Visual-Language Understanding](https://scale.com/leaderboard/visual_language_understanding)"""
|
401 |
+
)
|
402 |
+
with gr.Tab("ToolComp", visible=False):
|
403 |
+
with gr.Tab("Enterprise"):
|
404 |
+
toolcomp_enterprise_plot: gr.Plot = gr.Plot()
|
405 |
+
toolcomp_enterprise_markdown: gr.Markdown = gr.Markdown(
|
406 |
+
value="""Source: [SEAL Leaderboard: Agentic Tool Use (Enterprise)](https://scale.com/leaderboard/tool_use_enterprise)"""
|
407 |
+
)
|
408 |
+
with gr.Tab("Chat"):
|
409 |
+
toolcomp_chat_plot: gr.Plot = gr.Plot()
|
410 |
+
toolcomp_chat_markdown: gr.Markdown = gr.Markdown(
|
411 |
+
value="""Source: [SEAL Leaderboard: Agentic Tool Use (Chat)](https://scale.com/leaderboard/tool_use_chat)"""
|
412 |
+
)
|
413 |
+
with gr.Tab("BFCL", visible=False):
|
414 |
+
bfcl_plot: gr.Plot = gr.Plot()
|
415 |
+
bfcl_markdown: gr.Markdown = gr.Markdown(
|
416 |
+
value="""Source: [BFCL Leaderboard](https://gorilla.cs.berkeley.edu/leaderboard.html)"""
|
417 |
+
)
|
418 |
+
with gr.Tab("Aider Polyglot", visible=False):
|
419 |
+
aider_plot: gr.Plot = gr.Plot()
|
420 |
+
aider_markdown: gr.Markdown = gr.Markdown(
|
421 |
+
value="""Source: [Aider LLM Leaderboards](https://aider.chat/docs/leaderboards/)"""
|
422 |
+
)
|
423 |
with gr.Tab("OpenCompass", visible=False):
|
424 |
opencompass_plot: gr.Plot = gr.Plot()
|
425 |
opencompass_markdown: gr.Markdown = gr.Markdown(
|
|
|
490 |
cybench_markdown: gr.Markdown = gr.Markdown(
|
491 |
value="""Source: [Cybench Leaderboard](https://hal.cs.princeton.edu/cybench)"""
|
492 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
with gr.Tab("QuALITY", visible=False):
|
494 |
quality_plot: gr.Plot = gr.Plot()
|
495 |
quality_markdown: gr.Markdown = gr.Markdown(
|
496 |
value="""Source: [QuALITY Leaderboard](https://nyu-mll.github.io/quality/)"""
|
497 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
with gr.Tab("Finance") as finance_tab:
|
499 |
with gr.Tab("Big Tech Capex") as big_five_capex_tab:
|
500 |
big_five_capex_plot: gr.Plot = gr.Plot()
|
501 |
with gr.Tab("NVIDIA Revenue", visible=False) as nvidia_revenue:
|
502 |
nvidia_revenue_plot: gr.Plot = gr.Plot()
|
503 |
+
big_five_capex_tab.select(fn=create_ai_cloud_companies_plot, outputs=big_five_capex_plot)
|
504 |
arc_agi_public_eval_tab.select(fn=create_simple_plot,
|
505 |
inputs=[gr.State("arc_agi_leaderboard.jsonl"),
|
506 |
gr.State(
|
|
|
531 |
gr.State(0), gr.State(100),
|
532 |
gr.State({"MTurkers": 77})],
|
533 |
outputs=arc_agi_semi_private_eval_plot)
|
534 |
+
finance_tab.select(fn=create_ai_cloud_companies_plot, outputs=big_five_capex_plot)
|
535 |
simple_bench_tab.select(fn=create_simple_plot,
|
536 |
inputs=[gr.State("simple_bench_leaderboard.jsonl"),
|
537 |
gr.State("Simple Bench Score"),
|