kaizuberbuehler commited on
Commit
3c513eb
·
1 Parent(s): 05274f2

Update and improve capex figures

Browse files
README.md CHANGED
@@ -8,5 +8,3 @@ sdk_version: 4.36.1
8
  app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
8
  app_file: app.py
9
  pinned: false
10
  ---
 
 
big_five_capex.jsonl → ai_cloud_companies_capex.jsonl RENAMED
@@ -1,40 +1,40 @@
1
- {"Quarter": "2015 Q3", "Microsoft": 1356, "Google": 2406, "Meta": 780, "Amazon": 1195}
2
- {"Quarter": "2015 Q4", "Microsoft": 2024, "Google": 2102, "Meta": 692, "Amazon": 1309}
3
- {"Quarter": "2016 Q1", "Microsoft": 2308, "Google": 2444, "Meta": 1132, "Amazon": 1179}
4
- {"Quarter": "2016 Q2", "Microsoft": 2655, "Google": 2136, "Meta": 995, "Amazon": 1711}
5
- {"Quarter": "2016 Q3", "Microsoft": 2163, "Google": 2554, "Meta": 1095, "Amazon": 1841}
6
- {"Quarter": "2016 Q4", "Microsoft": 1988, "Google": 3078, "Meta": 1269, "Amazon": 3073}
7
- {"Quarter": "2017 Q1", "Microsoft": 1695, "Google": 2508, "Meta": 1271, "Amazon": 2148}
8
- {"Quarter": "2017 Q2", "Microsoft": 2283, "Google": 2831, "Meta": 1444, "Amazon": 3113}
9
- {"Quarter": "2017 Q3", "Microsoft": 2132, "Google": 3538, "Meta": 1755, "Amazon": 3074}
10
- {"Quarter": "2017 Q4", "Microsoft": 2586, "Google": 4307, "Meta": 2263, "Amazon": 3619}
11
- {"Quarter": "2018 Q1", "Microsoft": 2934, "Google": 7299, "Meta": 2812, "Amazon": 3098}
12
- {"Quarter": "2018 Q2", "Microsoft": 3980, "Google": 5477, "Meta": 3460, "Amazon": 3243}
13
- {"Quarter": "2018 Q3", "Microsoft": 3602, "Google": 5282, "Meta": 3342, "Amazon": 3352}
14
- {"Quarter": "2018 Q4", "Microsoft": 3707, "Google": 7081, "Meta": 4301, "Amazon": 3734}
15
- {"Quarter": "2019 Q1", "Microsoft": 2565, "Google": 4638, "Meta": 3837, "Amazon": 3290}
16
- {"Quarter": "2019 Q2", "Microsoft": 4051, "Google": 6126, "Meta": 3633, "Amazon": 3562}
17
- {"Quarter": "2019 Q3", "Microsoft": 3385, "Google": 6732, "Meta": 3532, "Amazon": 4697}
18
- {"Quarter": "2019 Q4", "Microsoft": 3545, "Google": 6052, "Meta": 4100, "Amazon": 5312}
19
- {"Quarter": "2020 Q1", "Microsoft": 3767, "Google": 6005, "Meta": 3558, "Amazon": 6795}
20
- {"Quarter": "2020 Q2", "Microsoft": 4744, "Google": 5391, "Meta": 3255, "Amazon": 7459}
21
- {"Quarter": "2020 Q3", "Microsoft": 4907, "Google": 5406, "Meta": 3689, "Amazon": 11063}
22
- {"Quarter": "2020 Q4", "Microsoft": 4174, "Google": 5479, "Meta": 4613, "Amazon": 14823}
23
- {"Quarter": "2021 Q1", "Microsoft": 5089, "Google": 5942, "Meta": 4303, "Amazon": 12082}
24
- {"Quarter": "2021 Q2", "Microsoft": 6452, "Google": 5496, "Meta": 4641, "Amazon": 14288}
25
- {"Quarter": "2021 Q3", "Microsoft": 5810, "Google": 6819, "Meta": 4346, "Amazon": 15748}
26
- {"Quarter": "2021 Q4", "Microsoft": 5865, "Google": 6383, "Meta": 5400, "Amazon": 18935}
27
- {"Quarter": "2022 Q1", "Microsoft": 5340, "Google": 9786, "Meta": 5441, "Amazon": 14951}
28
- {"Quarter": "2022 Q2", "Microsoft": 6871, "Google": 6828, "Meta": 7572, "Amazon": 15724}
29
- {"Quarter": "2022 Q3", "Microsoft": 6283, "Google": 7276, "Meta": 9375, "Amazon": 16378}
30
- {"Quarter": "2022 Q4", "Microsoft": 6274, "Google": 7595, "Meta": 9043, "Amazon": 16592}
31
- {"Quarter": "2023 Q1", "Microsoft": 6607, "Google": 6289, "Meta": 6823, "Amazon": 14207}
32
- {"Quarter": "2023 Q2", "Microsoft": 8943, "Google": 6888, "Meta": 6134, "Amazon": 11455}
33
- {"Quarter": "2023 Q3", "Microsoft": 9917, "Google": 8055, "Meta": 6543, "Amazon": 12479}
34
- {"Quarter": "2023 Q4", "Microsoft": 9735, "Google": 11019, "Meta": 7665, "Amazon": 14588}
35
- {"Quarter": "2024 Q1", "Microsoft": 10952, "Google": 12012, "Meta": 6400, "Amazon": 14925}
36
- {"Quarter": "2024 Q2", "Microsoft": 13873, "Google": 13186, "Meta": 8173, "Amazon": 17620}
37
- {"Quarter": "2024 Q3", "Microsoft": 14923, "Google": 13016, "Meta": 8258, "Amazon": 22620}
38
- {"Quarter": "2024 Q4", "Microsoft": 15804, "Google": 14276, "Meta": 14425, "Amazon": 27834}
39
- {"Quarter": "2025 Q1", "Microsoft": 16745, "Google": 17197, "Meta": 12941, "Amazon": 25019}
40
- {"Quarter": "2025 Q2", "Microsoft": 17079, "Google": 22446, "Meta": 16538, "Amazon": 0}
 
1
+ {"Quarter": "2015 Q3", "Microsoft": 1356, "Google": 2406, "Meta": 780, "Amazon": 1195, "Oracle": 446, "CoreWeave": 0}
2
+ {"Quarter": "2015 Q4", "Microsoft": 2024, "Google": 2102, "Meta": 692, "Amazon": 1309, "Oracle": 195, "CoreWeave": 0}
3
+ {"Quarter": "2016 Q1", "Microsoft": 2308, "Google": 2444, "Meta": 1132, "Amazon": 1179, "Oracle": 368, "CoreWeave": 0}
4
+ {"Quarter": "2016 Q2", "Microsoft": 2655, "Google": 2136, "Meta": 995, "Amazon": 1711, "Oracle": 180, "CoreWeave": 0}
5
+ {"Quarter": "2016 Q3", "Microsoft": 2163, "Google": 2554, "Meta": 1095, "Amazon": 1841, "Oracle": 299, "CoreWeave": 0}
6
+ {"Quarter": "2016 Q4", "Microsoft": 1988, "Google": 3078, "Meta": 1269, "Amazon": 3073, "Oracle": 757, "CoreWeave": 0}
7
+ {"Quarter": "2017 Q1", "Microsoft": 1695, "Google": 2508, "Meta": 1271, "Amazon": 2148, "Oracle": 440, "CoreWeave": 0}
8
+ {"Quarter": "2017 Q2", "Microsoft": 2283, "Google": 2831, "Meta": 1444, "Amazon": 3113, "Oracle": 525, "CoreWeave": 0}
9
+ {"Quarter": "2017 Q3", "Microsoft": 2132, "Google": 3538, "Meta": 1755, "Amazon": 3074, "Oracle": 473, "CoreWeave": 0}
10
+ {"Quarter": "2017 Q4", "Microsoft": 2586, "Google": 4307, "Meta": 2263, "Amazon": 3619, "Oracle": 599, "CoreWeave": 0}
11
+ {"Quarter": "2018 Q1", "Microsoft": 2934, "Google": 7299, "Meta": 2812, "Amazon": 3098, "Oracle": 286, "CoreWeave": 0}
12
+ {"Quarter": "2018 Q2", "Microsoft": 3980, "Google": 5477, "Meta": 3460, "Amazon": 3243, "Oracle": 378, "CoreWeave": 0}
13
+ {"Quarter": "2018 Q3", "Microsoft": 3602, "Google": 5282, "Meta": 3342, "Amazon": 3352, "Oracle": 383, "CoreWeave": 0}
14
+ {"Quarter": "2018 Q4", "Microsoft": 3707, "Google": 7081, "Meta": 4301, "Amazon": 3734, "Oracle": 421, "CoreWeave": 0}
15
+ {"Quarter": "2019 Q1", "Microsoft": 2565, "Google": 4638, "Meta": 3837, "Amazon": 3290, "Oracle": 443, "CoreWeave": 0}
16
+ {"Quarter": "2019 Q2", "Microsoft": 4051, "Google": 6126, "Meta": 3633, "Amazon": 3562, "Oracle": 413, "CoreWeave": 0}
17
+ {"Quarter": "2019 Q3", "Microsoft": 3385, "Google": 6732, "Meta": 3532, "Amazon": 4697, "Oracle": 386, "CoreWeave": 0}
18
+ {"Quarter": "2019 Q4", "Microsoft": 3545, "Google": 6052, "Meta": 4100, "Amazon": 5312, "Oracle": 349, "CoreWeave": 0}
19
+ {"Quarter": "2020 Q1", "Microsoft": 3767, "Google": 6005, "Meta": 3558, "Amazon": 6795, "Oracle": 396, "CoreWeave": 0}
20
+ {"Quarter": "2020 Q2", "Microsoft": 4744, "Google": 5391, "Meta": 3255, "Amazon": 7459, "Oracle": 433, "CoreWeave": 0}
21
+ {"Quarter": "2020 Q3", "Microsoft": 4907, "Google": 5406, "Meta": 3689, "Amazon": 11063, "Oracle": 436, "CoreWeave": 0}
22
+ {"Quarter": "2020 Q4", "Microsoft": 4174, "Google": 5479, "Meta": 4613, "Amazon": 14823, "Oracle": 568, "CoreWeave": 0}
23
+ {"Quarter": "2021 Q1", "Microsoft": 5089, "Google": 5942, "Meta": 4303, "Amazon": 12082, "Oracle": 414, "CoreWeave": 0}
24
+ {"Quarter": "2021 Q2", "Microsoft": 6452, "Google": 5496, "Meta": 4641, "Amazon": 14288, "Oracle": 717, "CoreWeave": 0}
25
+ {"Quarter": "2021 Q3", "Microsoft": 5810, "Google": 6819, "Meta": 4346, "Amazon": 15748, "Oracle": 1062, "CoreWeave": 0}
26
+ {"Quarter": "2021 Q4", "Microsoft": 5865, "Google": 6383, "Meta": 5400, "Amazon": 18935, "Oracle": 925, "CoreWeave": 0}
27
+ {"Quarter": "2022 Q1", "Microsoft": 5340, "Google": 9786, "Meta": 5441, "Amazon": 14951, "Oracle": 1101, "CoreWeave": 18}
28
+ {"Quarter": "2022 Q2", "Microsoft": 6871, "Google": 6828, "Meta": 7572, "Amazon": 15724, "Oracle": 1423, "CoreWeave": 18}
29
+ {"Quarter": "2022 Q3", "Microsoft": 6283, "Google": 7276, "Meta": 9375, "Amazon": 16378, "Oracle": 1719, "CoreWeave": 18}
30
+ {"Quarter": "2022 Q4", "Microsoft": 6274, "Google": 7595, "Meta": 9043, "Amazon": 16592, "Oracle": 2435, "CoreWeave": 18}
31
+ {"Quarter": "2023 Q1", "Microsoft": 6607, "Google": 6289, "Meta": 6823, "Amazon": 14207, "Oracle": 2628, "CoreWeave": 588}
32
+ {"Quarter": "2023 Q2", "Microsoft": 8943, "Google": 6888, "Meta": 6134, "Amazon": 11455, "Oracle": 1913, "CoreWeave": 588}
33
+ {"Quarter": "2023 Q3", "Microsoft": 9917, "Google": 8055, "Meta": 6543, "Amazon": 12479, "Oracle": 1314, "CoreWeave": 588}
34
+ {"Quarter": "2023 Q4", "Microsoft": 9735, "Google": 11019, "Meta": 7665, "Amazon": 14588, "Oracle": 1080, "CoreWeave": 1180}
35
+ {"Quarter": "2024 Q1", "Microsoft": 10952, "Google": 12012, "Meta": 6400, "Amazon": 14925, "Oracle": 1674, "CoreWeave": 1742}
36
+ {"Quarter": "2024 Q2", "Microsoft": 13873, "Google": 13186, "Meta": 8173, "Amazon": 17620, "Oracle": 2798, "CoreWeave": 1731}
37
+ {"Quarter": "2024 Q3", "Microsoft": 14923, "Google": 13016, "Meta": 8258, "Amazon": 22620, "Oracle": 2303, "CoreWeave": 1731}
38
+ {"Quarter": "2024 Q4", "Microsoft": 15804, "Google": 14276, "Meta": 14425, "Amazon": 27834, "Oracle": 3970, "CoreWeave": 3498}
39
+ {"Quarter": "2025 Q1", "Microsoft": 16745, "Google": 17197, "Meta": 12941, "Amazon": 25019, "Oracle": 5862, "CoreWeave": 1407}
40
+ {"Quarter": "2025 Q2", "Microsoft": 17079, "Google": 22446, "Meta": 16538, "Amazon": 32183, "Oracle": 9080, "CoreWeave": 0}
app.py CHANGED
@@ -5,14 +5,14 @@ import gradio as gr
5
  import plotly.graph_objects as go
6
 
7
 
8
- def create_big_five_capex_plot() -> go.Figure:
9
  # Read data from the JSON Lines file.
10
- with open("big_five_capex.jsonl", "r") as file:
11
  data = [json.loads(line) for line in file if line.strip()]
12
 
13
  quarters: list[str] = [entry["Quarter"] for entry in data]
14
- companies = ['Microsoft', 'Google', 'Meta', 'Amazon']
15
- colors = ['#80bb00', '#ee161f', '#0065e3', '#ff6200']
16
 
17
  x_positions = list(range(len(quarters)))
18
 
@@ -29,7 +29,7 @@ def create_big_five_capex_plot() -> go.Figure:
29
  fig = go.Figure(data=traces)
30
  fig.update_layout(
31
  barmode="stack",
32
- title="Capital Expenditures of Amazon, Meta, Google and Microsoft in Millions of USD per Quarter",
33
  xaxis_title="Quarter",
34
  yaxis_title="Capital Expenditures (Millions USD)",
35
  xaxis=dict(
@@ -40,24 +40,50 @@ def create_big_five_capex_plot() -> go.Figure:
40
  height=800
41
  )
42
 
43
- # Calculate the x position for the vertical dotted line.
44
  # We want the line drawn between "2023 Q1" and "2023 Q2".
45
  try:
46
  idx_q1 = quarters.index("2023 Q1")
47
  idx_q2 = quarters.index("2023 Q2")
48
- vline_x = (idx_q1 + idx_q2) / 2 # position midway between the two quarters
49
  except ValueError:
50
  # Fall back if quarters not found.
51
- vline_x = 0
52
 
53
- # Add a vertical dotted line spanning the full height
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  fig.add_shape(
55
  type="line",
56
  xref="x",
57
  yref="paper",
58
- x0=vline_x,
59
  y0=0,
60
- x1=vline_x,
61
  y1=1,
62
  line=dict(
63
  color="black",
@@ -66,9 +92,9 @@ def create_big_five_capex_plot() -> go.Figure:
66
  )
67
  )
68
 
69
- # Add an annotation label above the vertical line.
70
  fig.add_annotation(
71
- x=vline_x,
72
  y=1.05, # place just above the top of the plotting area
73
  xref="x",
74
  yref="paper",
@@ -81,6 +107,21 @@ def create_big_five_capex_plot() -> go.Figure:
81
  align="center"
82
  )
83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  return fig
85
 
86
 
@@ -333,6 +374,52 @@ with gr.Blocks() as demo:
333
  zeroeval_crux_markdown: gr.Markdown = gr.Markdown(
334
  value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)"""
335
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336
  with gr.Tab("OpenCompass", visible=False):
337
  opencompass_plot: gr.Plot = gr.Plot()
338
  opencompass_markdown: gr.Markdown = gr.Markdown(
@@ -403,63 +490,17 @@ with gr.Blocks() as demo:
403
  cybench_markdown: gr.Markdown = gr.Markdown(
404
  value="""Source: [Cybench Leaderboard](https://hal.cs.princeton.edu/cybench)"""
405
  )
406
- with gr.Tab("MultiChallenge", visible=False):
407
- multichallenge_plot: gr.Plot = gr.Plot()
408
- multichallenge_markdown: gr.Markdown = gr.Markdown(
409
- value="""Source: [SEAL Leaderboard: MultiChallenge](https://scale.com/leaderboard/multichallenge)"""
410
- )
411
- with gr.Tab("VISTA", visible=False):
412
- vista_plot: gr.Plot = gr.Plot()
413
- vista_markdown: gr.Markdown = gr.Markdown(
414
- value="""Source: [SEAL Leaderboard: Visual-Language Understanding](https://scale.com/leaderboard/visual_language_understanding)"""
415
- )
416
- with gr.Tab("ToolComp", visible=False):
417
- with gr.Tab("Enterprise"):
418
- toolcomp_enterprise_plot: gr.Plot = gr.Plot()
419
- toolcomp_enterprise_markdown: gr.Markdown = gr.Markdown(
420
- value="""Source: [SEAL Leaderboard: Agentic Tool Use (Enterprise)](https://scale.com/leaderboard/tool_use_enterprise)"""
421
- )
422
- with gr.Tab("Chat"):
423
- toolcomp_chat_plot: gr.Plot = gr.Plot()
424
- toolcomp_chat_markdown: gr.Markdown = gr.Markdown(
425
- value="""Source: [SEAL Leaderboard: Agentic Tool Use (Chat)](https://scale.com/leaderboard/tool_use_chat)"""
426
- )
427
- with gr.Tab("BFCL", visible=False):
428
- bfcl_plot: gr.Plot = gr.Plot()
429
- bfcl_markdown: gr.Markdown = gr.Markdown(
430
- value="""Source: [BFCL Leaderboard](https://gorilla.cs.berkeley.edu/leaderboard.html)"""
431
- )
432
- with gr.Tab("EvalPlus", visible=False):
433
- evalplus_plot: gr.Plot = gr.Plot()
434
- evalplus_markdown: gr.Markdown = gr.Markdown(
435
- value="""Source: [EvalPlus Leaderboard](https://evalplus.github.io/leaderboard.html)"""
436
- )
437
- with gr.Tab("Aider Polyglot", visible=False):
438
- aider_plot: gr.Plot = gr.Plot()
439
- aider_markdown: gr.Markdown = gr.Markdown(
440
- value="""Source: [Aider LLM Leaderboards](https://aider.chat/docs/leaderboards/)"""
441
- )
442
  with gr.Tab("QuALITY", visible=False):
443
  quality_plot: gr.Plot = gr.Plot()
444
  quality_markdown: gr.Markdown = gr.Markdown(
445
  value="""Source: [QuALITY Leaderboard](https://nyu-mll.github.io/quality/)"""
446
  )
447
- with gr.Tab("MMVU", visible=False):
448
- mmvu_plot: gr.Plot = gr.Plot()
449
- mmvu_markdown: gr.Markdown = gr.Markdown(
450
- value="""Source: [MMVU Leaderboard](https://mmvu-benchmark.github.io/#leaderboard)"""
451
- )
452
- with gr.Tab("PhysBench", visible=False):
453
- physbench_plot: gr.Plot = gr.Plot()
454
- physbench_markdown: gr.Markdown = gr.Markdown(
455
- value="""Source: [PhysBench Leaderboard](https://physbench.github.io/#leaderboard)"""
456
- )
457
  with gr.Tab("Finance") as finance_tab:
458
  with gr.Tab("Big Tech Capex") as big_five_capex_tab:
459
  big_five_capex_plot: gr.Plot = gr.Plot()
460
  with gr.Tab("NVIDIA Revenue", visible=False) as nvidia_revenue:
461
  nvidia_revenue_plot: gr.Plot = gr.Plot()
462
- big_five_capex_tab.select(fn=create_big_five_capex_plot, outputs=big_five_capex_plot)
463
  arc_agi_public_eval_tab.select(fn=create_simple_plot,
464
  inputs=[gr.State("arc_agi_leaderboard.jsonl"),
465
  gr.State(
@@ -490,7 +531,7 @@ with gr.Blocks() as demo:
490
  gr.State(0), gr.State(100),
491
  gr.State({"MTurkers": 77})],
492
  outputs=arc_agi_semi_private_eval_plot)
493
- finance_tab.select(fn=create_big_five_capex_plot, outputs=big_five_capex_plot)
494
  simple_bench_tab.select(fn=create_simple_plot,
495
  inputs=[gr.State("simple_bench_leaderboard.jsonl"),
496
  gr.State("Simple Bench Score"),
 
5
  import plotly.graph_objects as go
6
 
7
 
8
+ def create_ai_cloud_companies_plot() -> go.Figure:
9
  # Read data from the JSON Lines file.
10
+ with open("ai_cloud_companies_capex.jsonl", "r") as file:
11
  data = [json.loads(line) for line in file if line.strip()]
12
 
13
  quarters: list[str] = [entry["Quarter"] for entry in data]
14
+ companies = ['Microsoft', 'Google', 'Meta', 'Amazon', 'Oracle', 'CoreWeave']
15
+ colors = ['#80bb00', '#ee161f', '#0065e3', '#ff6200', '#f80000', '#4b8bbe']
16
 
17
  x_positions = list(range(len(quarters)))
18
 
 
29
  fig = go.Figure(data=traces)
30
  fig.update_layout(
31
  barmode="stack",
32
+ title="Capital Expenditures (PP&E) of AI Cloud Companies",
33
  xaxis_title="Quarter",
34
  yaxis_title="Capital Expenditures (Millions USD)",
35
  xaxis=dict(
 
40
  height=800
41
  )
42
 
43
+ # Calculate the x position for the AI race vertical dotted line.
44
  # We want the line drawn between "2023 Q1" and "2023 Q2".
45
  try:
46
  idx_q1 = quarters.index("2023 Q1")
47
  idx_q2 = quarters.index("2023 Q2")
48
+ ai_race_vline_x = (idx_q1 + idx_q2) / 2 # position midway between the two quarters
49
  except ValueError:
50
  # Fall back if quarters not found.
51
+ ai_race_vline_x = 0
52
 
53
+ # Calculate the x position for the COVID-19 pandemic vertical dotted line.
54
+ # We want the line drawn between "2020 Q1" and "2020 Q2".
55
+ try:
56
+ covid_idx_q1 = quarters.index("2020 Q1")
57
+ covid_idx_q2 = quarters.index("2020 Q2")
58
+ covid_vline_x = (covid_idx_q1 + covid_idx_q2) / 2 # position midway between the two quarters
59
+ except ValueError:
60
+ # Fall back if quarters not found.
61
+ covid_vline_x = 0
62
+
63
+ # Add a vertical dotted line for AI race spanning the full height
64
+ fig.add_shape(
65
+ type="line",
66
+ xref="x",
67
+ yref="paper",
68
+ x0=ai_race_vline_x,
69
+ y0=0,
70
+ x1=ai_race_vline_x,
71
+ y1=1,
72
+ line=dict(
73
+ color="black",
74
+ dash="dot",
75
+ width=2
76
+ )
77
+ )
78
+
79
+ # Add a vertical dotted line for COVID-19 pandemic spanning the full height
80
  fig.add_shape(
81
  type="line",
82
  xref="x",
83
  yref="paper",
84
+ x0=covid_vline_x,
85
  y0=0,
86
+ x1=covid_vline_x,
87
  y1=1,
88
  line=dict(
89
  color="black",
 
92
  )
93
  )
94
 
95
+ # Add an annotation label above the AI race vertical line.
96
  fig.add_annotation(
97
+ x=ai_race_vline_x,
98
  y=1.05, # place just above the top of the plotting area
99
  xref="x",
100
  yref="paper",
 
107
  align="center"
108
  )
109
 
110
+ # Add an annotation label above the COVID-19 pandemic vertical line.
111
+ fig.add_annotation(
112
+ x=covid_vline_x,
113
+ y=1.05,
114
+ xref="x",
115
+ yref="paper",
116
+ text="COVID-19 pandemic begins",
117
+ showarrow=False,
118
+ font=dict(
119
+ color="black",
120
+ size=12
121
+ ),
122
+ align="center"
123
+ )
124
+
125
  return fig
126
 
127
 
 
374
  zeroeval_crux_markdown: gr.Markdown = gr.Markdown(
375
  value="""Source: [ZeroEval Leaderboard](https://huggingface.co/spaces/allenai/ZeroEval)"""
376
  )
377
+ with gr.Tab("PhysBench", visible=False):
378
+ physbench_plot: gr.Plot = gr.Plot()
379
+ physbench_markdown: gr.Markdown = gr.Markdown(
380
+ value="""Source: [PhysBench Leaderboard](https://physbench.github.io/#leaderboard)"""
381
+ )
382
+ with gr.Tab("MMVU", visible=False):
383
+ mmvu_plot: gr.Plot = gr.Plot()
384
+ mmvu_markdown: gr.Markdown = gr.Markdown(
385
+ value="""Source: [MMVU Leaderboard](https://mmvu-benchmark.github.io/#leaderboard)"""
386
+ )
387
+ with gr.Tab("EvalPlus", visible=False):
388
+ evalplus_plot: gr.Plot = gr.Plot()
389
+ evalplus_markdown: gr.Markdown = gr.Markdown(
390
+ value="""Source: [EvalPlus Leaderboard](https://evalplus.github.io/leaderboard.html)"""
391
+ )
392
+ with gr.Tab("MultiChallenge", visible=False):
393
+ multichallenge_plot: gr.Plot = gr.Plot()
394
+ multichallenge_markdown: gr.Markdown = gr.Markdown(
395
+ value="""Source: [SEAL Leaderboard: MultiChallenge](https://scale.com/leaderboard/multichallenge)"""
396
+ )
397
+ with gr.Tab("VISTA", visible=False):
398
+ vista_plot: gr.Plot = gr.Plot()
399
+ vista_markdown: gr.Markdown = gr.Markdown(
400
+ value="""Source: [SEAL Leaderboard: Visual-Language Understanding](https://scale.com/leaderboard/visual_language_understanding)"""
401
+ )
402
+ with gr.Tab("ToolComp", visible=False):
403
+ with gr.Tab("Enterprise"):
404
+ toolcomp_enterprise_plot: gr.Plot = gr.Plot()
405
+ toolcomp_enterprise_markdown: gr.Markdown = gr.Markdown(
406
+ value="""Source: [SEAL Leaderboard: Agentic Tool Use (Enterprise)](https://scale.com/leaderboard/tool_use_enterprise)"""
407
+ )
408
+ with gr.Tab("Chat"):
409
+ toolcomp_chat_plot: gr.Plot = gr.Plot()
410
+ toolcomp_chat_markdown: gr.Markdown = gr.Markdown(
411
+ value="""Source: [SEAL Leaderboard: Agentic Tool Use (Chat)](https://scale.com/leaderboard/tool_use_chat)"""
412
+ )
413
+ with gr.Tab("BFCL", visible=False):
414
+ bfcl_plot: gr.Plot = gr.Plot()
415
+ bfcl_markdown: gr.Markdown = gr.Markdown(
416
+ value="""Source: [BFCL Leaderboard](https://gorilla.cs.berkeley.edu/leaderboard.html)"""
417
+ )
418
+ with gr.Tab("Aider Polyglot", visible=False):
419
+ aider_plot: gr.Plot = gr.Plot()
420
+ aider_markdown: gr.Markdown = gr.Markdown(
421
+ value="""Source: [Aider LLM Leaderboards](https://aider.chat/docs/leaderboards/)"""
422
+ )
423
  with gr.Tab("OpenCompass", visible=False):
424
  opencompass_plot: gr.Plot = gr.Plot()
425
  opencompass_markdown: gr.Markdown = gr.Markdown(
 
490
  cybench_markdown: gr.Markdown = gr.Markdown(
491
  value="""Source: [Cybench Leaderboard](https://hal.cs.princeton.edu/cybench)"""
492
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493
  with gr.Tab("QuALITY", visible=False):
494
  quality_plot: gr.Plot = gr.Plot()
495
  quality_markdown: gr.Markdown = gr.Markdown(
496
  value="""Source: [QuALITY Leaderboard](https://nyu-mll.github.io/quality/)"""
497
  )
 
 
 
 
 
 
 
 
 
 
498
  with gr.Tab("Finance") as finance_tab:
499
  with gr.Tab("Big Tech Capex") as big_five_capex_tab:
500
  big_five_capex_plot: gr.Plot = gr.Plot()
501
  with gr.Tab("NVIDIA Revenue", visible=False) as nvidia_revenue:
502
  nvidia_revenue_plot: gr.Plot = gr.Plot()
503
+ big_five_capex_tab.select(fn=create_ai_cloud_companies_plot, outputs=big_five_capex_plot)
504
  arc_agi_public_eval_tab.select(fn=create_simple_plot,
505
  inputs=[gr.State("arc_agi_leaderboard.jsonl"),
506
  gr.State(
 
531
  gr.State(0), gr.State(100),
532
  gr.State({"MTurkers": 77})],
533
  outputs=arc_agi_semi_private_eval_plot)
534
+ finance_tab.select(fn=create_ai_cloud_companies_plot, outputs=big_five_capex_plot)
535
  simple_bench_tab.select(fn=create_simple_plot,
536
  inputs=[gr.State("simple_bench_leaderboard.jsonl"),
537
  gr.State("Simple Bench Score"),