# Stock Inspect ## Introduction Stock Inspect is a Streamlit web application designed for stock analysis. It uses the Language Model (Gemini-pro from google) to provide insights based on user-provided stock names from NSE. ## Installation 1. Clone the repository: ```bash git clone git@github.com:kailashsp/Stock_Inspect.git cd Stock_Inspect ``` 2. Install the required dependencies: ```bash pip install -r requirements.txt ``` 3. Setup env file 1. Create a `.env` file in the root directory of the project. 2. Add the following line to your `.env` file, replacing `YOUR_GOOGLE_API_KEY` with your actual Google API key: ```env GOOGLE_API_KEY=YOUR_GOOGLE_API_KEY ``` ## Usage 1. Run the Streamlit app: ```bash streamlit run app.py ``` 2. The web application will open in your default browser. 3. Enter a stock symbol in the search box to analyze the stock. ## Components ### Libraries/Frameworks Used - Pandas: Data manipulation and analysis. - JSON: Data interchange format. - Streamlit: Web application framework. - Streamlit Searchbox: Extension for a searchable dropdown. ### Files - `app.py`: Main Streamlit application. - `document_preprocessor.py`: Module for generating stock fundamentals. - `llm.py`: Module for the Language Model (LLM). - `prompt.py`: Module containing the stock analysis prompt. - `MCAP31122023.xlsx`: Excel file containing stock data. ## Configuration - `streamlit_config.toml`: Configuration file for Streamlit settings. ## Acknowledgments - Stock data provided by [Finology](https://finology.in/). ## License This project is licensed under the [MIT License](LICENSE).