import pandas as pd import json from document_preprocessor import generate_document from llm import LLM from prompt import stock_analysis_prompt import streamlit as st from streamlit_searchbox import st_searchbox st.set_page_config( page_title="Stock_Picker", page_icon="💰", layout="wide", initial_sidebar_state="expanded", ) left_co, cent_co,last_co = st.columns(3) with cent_co: st.image(image=".streamlit/stock-market.png") stocks = pd.read_excel("MCAP31122023.xlsx").set_index('Symbol') url = "https://ticker.finology.in/company/" model = LLM(model_name="Gemini") # function with list of labels def search_stocks(searchterm: str): if not searchterm: return [] matching_stocks = stocks[stocks.index.str.contains(searchterm, case=False, na=False)] return matching_stocks.index.tolist() selected_value = st_searchbox( search_stocks, key="wiki_searchbox", ) if selected_value: stock_url = f"https://ticker.finology.in/company/{selected_value}" stock_fundamentals = generate_document(stock_url) prompt = stock_analysis_prompt.replace( "{stock_name}",selected_value).replace("{context}",stock_fundamentals.page_content) result = model(prompt=prompt).replace('```',"") try: res = json.loads(result) confidence_score = res['buy'] analysis = res["detailed_analysis"] if confidence_score >= 75: st.success("High Confidence Score!") elif confidence_score > 40: st.warning("Moderate Confidence Score.") else: st.error("Low Confidence Score.") col1, col2 = st.columns(2) col1.write(f'**Buy Confidence Score:** {str(confidence_score)}') with st.expander("See explanation"): st.write(f"**Detailed Analysis:** {analysis}") st.markdown(f"[Learn more about {selected_value}]({stock_url})") except: st.write(result)