from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import gradio as gr model_path = 'kahennefer/fine_tuned_gpt2' model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) def generate_answer(question): result = text_gen_pipeline(question, max_length=100, num_return_sequences=1) return result[0]['generated_text'] iface = gr.Interface( fn=generate_answer, inputs=gr.Textbox(lines=2, placeholder="Ask a question about the case..."), outputs=gr.Text(label="Answer"), title="Case-Specific Question Answering System", description="Ask any question about the case, and the model will provide an answer based on its knowledge." ) iface.launch()