from huggingface_hub import from_pretrained_keras from PIL import Image import gradio as gr import tensorflow as tf import numpy as np import os model= tf.keras.models.load_model("./tf_model.h5") inputs = gr.inputs.Image() outputs = gr.outputs.Image() def predict(inputs): img = np.array(inputs) im = tf.image.resize(img, (128, 128)) im = tf.cast(im, tf.float32) / 255.0 pred_mask = model.predict(im[tf.newaxis, ...]) # take the best performing class for each pixel # the output of argmax looks like this [[1, 2, 0], ...] pred_mask_arg = tf.argmax(pred_mask, axis=-1) labels = [] # convert the prediction mask into binary masks for each class binary_masks = {} mask_codes = {} # when we take tf.argmax() over pred_mask, it becomes a tensor object # the shape becomes TensorShape object, looking like this TensorShape([128]) # we need to take get shape, convert to list and take the best one rows = pred_mask_arg[0][1].get_shape().as_list()[0] cols = pred_mask_arg[0][2].get_shape().as_list()[0] for cls in range(pred_mask.shape[-1]): binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class for row in range(rows): for col in range(cols): if pred_mask_arg[0][row][col] == cls: binary_masks[f"mask_{cls}"][row][col] = 1 else: binary_masks[f"mask_{cls}"][row][col] = 0 mask = binary_masks[f"mask_{cls}"] mask *= 255 img = Image.fromarray(mask.astype(np.int8), mode="L") return img gr.Interface(predict, inputs = inputs, outputs = output).launch()