from transformers import pipeline from multilingual_translation import text_to_text_generation from utils import lang_ids import gradio as gr biogpt_model_list = [ "microsoft/biogpt", "microsoft/BioGPT-Large", "microsoft/BioGPT-Large-PubMedQA" ] lang_model_list = [ "facebook/m2m100_1.2B", "facebook/m2m100_418M" ] whisper_model_list = [ "openai/whisper-small", "openai/whisper-medium", "openai/whisper-tiny", "openai/whisper-large" ] lang_list = list(lang_ids.keys()) def whisper_demo(input_audio, model_id): pipe = pipeline(task="automatic-speech-recognition",model=model_id, device='cuda:0') pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language='en', task="transcribe") output_text = pipe(input_audio)['text'] return output_text def translate_to_english(prompt, lang_model_id, base_lang): if base_lang == "English": return prompt else: text_output = text_to_text_generation( prompt=prompt, model_id=lang_model_id, device='cuda:0', target_lang='en' ) return text_output[0] def biogpt_text( prompt: str, biogpt_model_id: str, lang_model_id: str, base_lang: str, ): en_prompt = translate_to_english(prompt, lang_model_id, base_lang) generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0") output = generator(en_prompt, max_length=250, num_return_sequences=1, do_sample=True) output = output[0]['generated_text'] if base_lang == "English": output_text = output else: output_text = text_to_text_generation( prompt=output, model_id=lang_model_id, device='cuda:0', target_lang=base_lang ) return en_prompt, output, output_text def biogpt_audio( input_audio: str, biogpt_model_id: str, whisper_model_id: str, max_length: str, num_return_sequences: int ): en_prompt = whisper_demo(input_audio=input_audio, model_id=whisper_model_id) generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0") output = generator(en_prompt, max_length=max_length, num_return_sequences=num_return_sequences, do_sample=True) output_dict = {} for i in range(num_return_sequences): output_dict[str(i+1)] = output[i]['generated_text'] output_text = "" for i in range(num_return_sequences): output_text += f'{output_dict[str(i+1)]}\n\n' return en_prompt, output_text, output_text examples = [ ["COVID-19 is", biogpt_model_list[0], lang_model_list[1], "English"] ] app = gr.Blocks() with app: gr.Markdown("# **

Whisper + M2M100 + BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining

**") gr.Markdown( """

Follow me for more!
twitter | github | linkedin |

""" ) with gr.Row(): with gr.Column(): with gr.Tab("Text"): input_text = gr.Textbox(lines=3, value="COVID-19 is", label="Text") input_text_button = gr.Button(value="Predict") input_biogpt_model =gr.Dropdown(choices=biogpt_model_list, value=biogpt_model_list[0], label='BioGpt Model') input_m2m100_model =gr.Dropdown(choices=lang_model_list, value=lang_model_list[1], label='Language Model') input_base_lang = gr.Dropdown(lang_list, value="English", label="Base Language") with gr.Tab("Audio"): input_audio = gr.Microphone(label='Audio') input_audio_button = gr.Button(value="Predict") with gr.Column(): prompt_text = gr.Textbox(lines=3, label="Prompt") output_text = gr.Textbox(lines=3, label="BioGpt Text") translated_text = gr.Textbox(lines=3,label="Translated Text") gr.Examples(examples, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text], fn=biogpt_text, cache_examples=True) input_text_button.click(biogpt_text, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text]) input_audio_button.click(biogpt_audio, inputs=[input_audio, input_biogpt_model,input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text]) app.launch()