ka1kuk commited on
Commit
6cb06ab
·
verified ·
1 Parent(s): 9d727ab

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +63 -344
main.py CHANGED
@@ -1,8 +1,37 @@
1
- import click
2
- import subprocess, traceback, json
3
- import os, sys
4
  import random
5
- import importlib
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  def run_ollama_serve():
8
  try:
@@ -15,353 +44,43 @@ def run_ollama_serve():
15
  f"""
16
  LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve`
17
  """
18
- ) # noqa
19
 
20
  def is_port_in_use(port):
21
  import socket
22
 
23
  with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
24
  return s.connect_ex(("localhost", port)) == 0
25
-
26
- def run_server(
27
- host = "0.0.0.0",
28
- port = 8000,
29
- api_base = None,
30
- api_version = "2023-07-01-preview",
31
- model = None,
32
- alias = None,
33
- add_key = None,
34
- headers = None,
35
- save = False,
36
- debug = False,
37
- detailed_debug = False,
38
- temperature = 0.0,
39
- max_tokens = 1000,
40
- request_timeout = 10,
41
- drop_params = True,
42
- add_function_to_prompt = True,
43
- config = None,
44
- max_budget = 100,
45
- telemetry = False,
46
- test = False,
47
- local = False,
48
- num_workers = 1,
49
- test_async = False,
50
- num_requests = 1,
51
- use_queue = False,
52
- health = False,
53
- version = False,
54
- ):
55
- global feature_telemetry
56
- args = locals()
57
- if local:
58
- from proxy_server import app, save_worker_config, usage_telemetry
59
- else:
60
- try:
61
- from .litellm.proxy.proxy_server import app, save_worker_config, usage_telemetry
62
- except ImportError as e:
63
- if "litellm[proxy]" in str(e):
64
- # user is missing a proxy dependency, ask them to pip install litellm[proxy]
65
- raise e
66
- else:
67
- # this is just a local/relative import error, user git cloned litellm
68
- from proxy_server import app, save_worker_config, usage_telemetry
69
- feature_telemetry = usage_telemetry
70
- if version == True:
71
- pkg_version = importlib.metadata.version("litellm")
72
- click.echo(f"\nLiteLLM: Current Version = {pkg_version}\n")
73
- return
74
- if model and "ollama" in model and api_base is None:
75
  run_ollama_serve()
76
- if test_async is True:
77
- import requests, concurrent, time
78
-
79
- api_base = f"http://{host}:{port}"
80
-
81
- def _make_openai_completion():
82
- data = {
83
- "model": "gpt-3.5-turbo",
84
- "messages": [
85
- {"role": "user", "content": "Write a short poem about the moon"}
86
- ],
87
- }
88
-
89
- response = requests.post("http://0.0.0.0:8000/queue/request", json=data)
90
-
91
- response = response.json()
92
-
93
- while True:
94
- try:
95
- url = response["url"]
96
- polling_url = f"{api_base}{url}"
97
- polling_response = requests.get(polling_url)
98
- polling_response = polling_response.json()
99
- print("\n RESPONSE FROM POLLING JOB", polling_response)
100
- status = polling_response["status"]
101
- if status == "finished":
102
- llm_response = polling_response["result"]
103
- break
104
- print(
105
- f"POLLING JOB{polling_url}\nSTATUS: {status}, \n Response {polling_response}"
106
- ) # noqa
107
- time.sleep(0.5)
108
- except Exception as e:
109
- print("got exception in polling", e)
110
- break
111
-
112
- # Number of concurrent calls (you can adjust this)
113
- concurrent_calls = num_requests
114
-
115
- # List to store the futures of concurrent calls
116
- futures = []
117
- start_time = time.time()
118
- # Make concurrent calls
119
- with concurrent.futures.ThreadPoolExecutor(
120
- max_workers=concurrent_calls
121
- ) as executor:
122
- for _ in range(concurrent_calls):
123
- futures.append(executor.submit(_make_openai_completion))
124
-
125
- # Wait for all futures to complete
126
- concurrent.futures.wait(futures)
127
-
128
- # Summarize the results
129
- successful_calls = 0
130
- failed_calls = 0
131
-
132
- for future in futures:
133
- if future.done():
134
- if future.result() is not None:
135
- successful_calls += 1
136
- else:
137
- failed_calls += 1
138
- end_time = time.time()
139
- print(f"Elapsed Time: {end_time-start_time}")
140
- print(f"Load test Summary:")
141
- print(f"Total Requests: {concurrent_calls}")
142
- print(f"Successful Calls: {successful_calls}")
143
- print(f"Failed Calls: {failed_calls}")
144
- return
145
- if health != False:
146
- import requests
147
-
148
- print("\nLiteLLM: Health Testing models in config")
149
- response = requests.get(url=f"http://{host}:{port}/health")
150
- print(json.dumps(response.json(), indent=4))
151
- return
152
- if test != False:
153
- request_model = model or "gpt-3.5-turbo"
154
- click.echo(
155
- f"\nLiteLLM: Making a test ChatCompletions request to your proxy. Model={request_model}"
156
- )
157
- import openai
158
-
159
- if test == True: # flag value set
160
- api_base = f"http://{host}:{port}"
161
- else:
162
- api_base = test
163
- client = openai.OpenAI(api_key="My API Key", base_url=api_base)
164
-
165
- response = client.chat.completions.create(
166
- model=request_model,
167
- messages=[
168
- {
169
- "role": "user",
170
- "content": "this is a test request, write a short poem",
171
- }
172
- ],
173
- max_tokens=256,
174
- )
175
- click.echo(f"\nLiteLLM: response from proxy {response}")
176
-
177
- print(
178
- f"\n LiteLLM: Making a test ChatCompletions + streaming request to proxy. Model={request_model}"
179
- )
180
-
181
- response = client.chat.completions.create(
182
- model=request_model,
183
- messages=[
184
- {
185
- "role": "user",
186
- "content": "this is a test request, write a short poem",
187
- }
188
- ],
189
- stream=True,
190
- )
191
- for chunk in response:
192
- click.echo(f"LiteLLM: streaming response from proxy {chunk}")
193
- print("\n making completion request to proxy")
194
- response = client.completions.create(
195
- model=request_model, prompt="this is a test request, write a short poem"
196
- )
197
- print(response)
198
-
199
- return
200
- else:
201
- if headers:
202
- headers = json.loads(headers)
203
- save_worker_config(
204
- model=model,
205
- alias=alias,
206
- api_base=api_base,
207
- api_version=api_version,
208
- debug=debug,
209
- detailed_debug=detailed_debug,
210
- temperature=temperature,
211
- max_tokens=max_tokens,
212
- request_timeout=request_timeout,
213
- max_budget=max_budget,
214
- telemetry=telemetry,
215
- drop_params=drop_params,
216
- add_function_to_prompt=add_function_to_prompt,
217
- headers=headers,
218
- save=save,
219
- config=config,
220
- use_queue=use_queue,
221
- )
222
- try:
223
- import uvicorn
224
-
225
- if os.name == "nt":
226
- pass
227
- else:
228
- import gunicorn.app.base
229
- except:
230
- raise ImportError(
231
- "Uvicorn, gunicorn needs to be imported. Run - `pip 'litellm[proxy]'`"
232
- )
233
-
234
- if config is not None:
235
- """
236
- Allow user to pass in db url via config
237
-
238
- read from there and save it to os.env['DATABASE_URL']
239
- """
240
- try:
241
- import yaml
242
- except:
243
- raise ImportError(
244
- "yaml needs to be imported. Run - `pip install 'litellm[proxy]'`"
245
- )
246
-
247
- if os.path.exists(config):
248
- with open(config, "r") as config_file:
249
- config = yaml.safe_load(config_file)
250
- general_settings = config.get("general_settings", {})
251
- database_url = general_settings.get("database_url", None)
252
- if database_url and database_url.startswith("os.environ/"):
253
- original_dir = os.getcwd()
254
- # set the working directory to where this script is
255
- sys.path.insert(
256
- 0, os.path.abspath("../..")
257
- ) # Adds the parent directory to the system path - for litellm local dev
258
- import litellm
259
-
260
- database_url = litellm.get_secret(database_url)
261
- os.chdir(original_dir)
262
- if database_url is not None and isinstance(database_url, str):
263
- os.environ["DATABASE_URL"] = database_url
264
-
265
- if os.getenv("DATABASE_URL", None) is not None:
266
- try:
267
- subprocess.run(["prisma"], capture_output=True)
268
- is_prisma_runnable = True
269
- except FileNotFoundError:
270
- is_prisma_runnable = False
271
-
272
- if is_prisma_runnable:
273
- # run prisma db push, before starting server
274
- # Save the current working directory
275
- original_dir = os.getcwd()
276
- # set the working directory to where this script is
277
- abspath = os.path.abspath(__file__)
278
- dname = os.path.dirname(abspath)
279
- os.chdir(dname)
280
- try:
281
- subprocess.run(
282
- ["prisma", "db", "push", "--accept-data-loss"]
283
- ) # this looks like a weird edge case when prisma just wont start on render. we need to have the --accept-data-loss
284
- finally:
285
- os.chdir(original_dir)
286
- else:
287
- print(
288
- f"Unable to connect to DB. DATABASE_URL found in environment, but prisma package not found."
289
- )
290
- if port == 8000 and is_port_in_use(port):
291
- port = random.randint(1024, 49152)
292
- from litellm.proxy.proxy_server import app
293
-
294
- uvicorn.run(app, host=host, port=port) # run uvicorn
295
- # if os.name == "nt":
296
- # else:
297
- # import gunicorn.app.base
298
-
299
- # # Gunicorn Application Class
300
- # class StandaloneApplication(gunicorn.app.base.BaseApplication):
301
- # def __init__(self, app, options=None):
302
- # self.options = options or {} # gunicorn options
303
- # self.application = app # FastAPI app
304
- # super().__init__()
305
-
306
- # _endpoint_str = (
307
- # f"curl --location 'http://0.0.0.0:{port}/chat/completions' \\"
308
- # )
309
- # curl_command = (
310
- # _endpoint_str
311
- # + """
312
- # --header 'Content-Type: application/json' \\
313
- # --data ' {
314
- # "model": "gpt-3.5-turbo",
315
- # "messages": [
316
- # {
317
- # "role": "user",
318
- # "content": "what llm are you"
319
- # }
320
- # ]
321
- # }'
322
- # \n
323
- # """
324
- # )
325
- # print() # noqa
326
- # print( # noqa
327
- # f'\033[1;34mLiteLLM: Test your local proxy with: "litellm --test" This runs an openai.ChatCompletion request to your proxy [In a new terminal tab]\033[0m\n'
328
- # )
329
- # print( # noqa
330
- # f"\033[1;34mLiteLLM: Curl Command Test for your local proxy\n {curl_command} \033[0m\n"
331
- # )
332
- # print(
333
- # "\033[1;34mDocs: https://docs.litellm.ai/docs/simple_proxy\033[0m\n"
334
- # ) # noqa
335
- # print( # noqa
336
- # f"\033[1;34mSee all Router/Swagger docs on http://0.0.0.0:{port} \033[0m\n"
337
- # ) # noqa
338
-
339
- # def load_config(self):
340
- # # note: This Loads the gunicorn config - has nothing to do with LiteLLM Proxy config
341
- # config = {
342
- # key: value
343
- # for key, value in self.options.items()
344
- # if key in self.cfg.settings and value is not None
345
- # }
346
- # for key, value in config.items():
347
- # self.cfg.set(key.lower(), value)
348
-
349
- # def load(self):
350
- # # gunicorn app function
351
- # return self.application
352
-
353
- # gunicorn_options = {
354
- # "bind": f"{host}:{port}",
355
- # "workers": num_workers, # default is 1
356
- # "worker_class": "uvicorn.workers.UvicornWorker",
357
- # "preload": True, # Add the preload flag,
358
- # "accesslog": "-", # Log to stdout
359
- # "access_log_format": '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s',
360
- # }
361
- # StandaloneApplication(
362
- # app=app, options=gunicorn_options
363
- # ).run() # Run gunicorn
364
 
365
 
366
  if __name__ == "__main__":
367
- run_server()
 
1
+ from litellm.proxy.proxy_server import app, save_worker_config
2
+ import uvicorn
 
3
  import random
4
+ import subprocess, json
5
+ import os
6
+
7
+ host = "0.0.0.0"
8
+ port = 8000
9
+ api_base = None
10
+ api_version = "2023-07-01-preview"
11
+ model = None
12
+ alias = None
13
+ add_key = None
14
+ headers = None
15
+ save = False
16
+ debug = False
17
+ detailed_debug = False
18
+ temperature = 0.0
19
+ max_tokens = 1000
20
+ request_timeout = 10
21
+ drop_params = True
22
+ add_function_to_prompt = True
23
+ config = None
24
+ max_budget = 100
25
+ telemetry = False
26
+ test = False
27
+ local = False
28
+ num_workers = 1
29
+ test_async = False
30
+ num_requests = 1
31
+ use_queue = False
32
+ health = False
33
+ version = False
34
+
35
 
36
  def run_ollama_serve():
37
  try:
 
44
  f"""
45
  LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve`
46
  """
47
+ )
48
 
49
  def is_port_in_use(port):
50
  import socket
51
 
52
  with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
53
  return s.connect_ex(("localhost", port)) == 0
54
+
55
+ if model and "ollama" in model and api_base is None:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  run_ollama_serve()
57
+
58
+ else:
59
+ if headers:
60
+ headers = json.loads(headers)
61
+ save_worker_config(
62
+ model=model,
63
+ alias=alias,
64
+ api_base=api_base,
65
+ api_version=api_version,
66
+ debug=debug,
67
+ detailed_debug=detailed_debug,
68
+ temperature=temperature,
69
+ max_tokens=max_tokens,
70
+ request_timeout=request_timeout,
71
+ max_budget=max_budget,
72
+ telemetry=telemetry,
73
+ drop_params=drop_params,
74
+ add_function_to_prompt=add_function_to_prompt,
75
+ headers=headers,
76
+ save=save,
77
+ config=config,
78
+ use_queue=use_queue,
79
+ )
80
+
81
+ if port == 8000 and is_port_in_use(port):
82
+ port = random.randint(1024, 49152)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
 
85
  if __name__ == "__main__":
86
+ uvicorn.run(app, host=host, port=port)