#!/usr/bin/env python3 # # Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang) # # See LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # References: # https://gradio.app/docs/#dropdown import logging import os import tempfile import time import urllib.request from datetime import datetime import gradio as gr import soundfile as sf from model import decode, get_pretrained_model, whisper_models def convert_to_wav(in_filename: str) -> str: """Convert the input audio file to a wave file""" out_filename = in_filename + ".wav" logging.info(f"Converting '{in_filename}' to '{out_filename}'") _ = os.system( f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 -ac 1 '{out_filename}'" ) return out_filename def build_html_output(s: str, style: str = "result_item_success"): return f"""
{s}
""" def process_url( repo_id: str, url: str, ): logging.info(f"Processing URL: {url}") with tempfile.NamedTemporaryFile() as f: try: urllib.request.urlretrieve(url, f.name) return process( in_filename=f.name, repo_id=repo_id, ) except Exception as e: logging.info(str(e)) return "", build_html_output(str(e), "result_item_error") def process_uploaded_file( repo_id: str, in_filename: str, ): if in_filename is None or in_filename == "": return "", build_html_output( "Please first upload a file and then click " 'the button "submit for recognition"', "result_item_error", ) logging.info(f"Processing uploaded file: {in_filename}") try: return process( in_filename=in_filename, repo_id=repo_id, ) except Exception as e: logging.info(str(e)) return "", build_html_output(str(e), "result_item_error") def process_microphone( repo_id: str, in_filename: str, ): if in_filename is None or in_filename == "": return "", build_html_output( "Please first click 'Record from microphone', speak, " "click 'Stop recording', and then " "click the button 'submit for recognition'", "result_item_error", ) logging.info(f"Processing microphone: {in_filename}") try: return process( in_filename=in_filename, repo_id=repo_id, ) except Exception as e: logging.info(str(e)) return "", build_html_output(str(e), "result_item_error") def process( repo_id: str, in_filename: str, ): logging.info(f"repo_id: {repo_id}") logging.info(f"in_filename: {in_filename}") filename = convert_to_wav(in_filename) now = datetime.now() date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") logging.info(f"Started at {date_time}") start = time.time() recognizer = get_pretrained_model(repo_id) text = decode(recognizer, filename) date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") end = time.time() info = sf.info(filename) duration = info.duration elapsed = end - start rtf = elapsed / duration logging.info(f"Finished at {date_time} s. Elapsed: {elapsed: .3f} s") info = f""" Wave duration : {duration: .3f} s
Processing time: {elapsed: .3f} s
RTF: {elapsed: .3f}/{duration: .3f} = {rtf:.3f}
""" if rtf > 1: info += ( "
We are loading the model for the first run. " "Please run again to measure the real RTF.
" ) logging.info(info) logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}") return text, build_html_output(info) title = "# Speech recognition: [Next-gen Kaldi](https://github.com/k2-fsa) + [Whisper](https://github.com/openai/whisper/)" description = """ This space shows how to do automatic speech recognition with [Next-gen Kaldi](https://github.com/k2-fsa) using [Whisper](https://github.com/openai/whisper/) models. It is running on a machine with 2 vCPUs with 16 GB RAM within a docker container provided by Hugging Face. See more information by visiting the following links: - If you want to deploy it locally, please see """ # css style is copied from # https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 css = """ .result {display:flex;flex-direction:column} .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} .result_item_success {background-color:mediumaquamarine;color:white;align-self:start} .result_item_error {background-color:#ff7070;color:white;align-self:start} """ demo = gr.Blocks(css=css) with demo: gr.Markdown(title) model_choices = list(whisper_models.keys()) model_dropdown = gr.Dropdown( choices=model_choices, label="Select a model", value=model_choices[0], ) with gr.Tabs(): with gr.TabItem("Upload from disk"): uploaded_file = gr.Audio( sources=["upload"], # Choose between "microphone", "upload" type="filepath", label="Upload from disk", ) upload_button = gr.Button("Submit for recognition") uploaded_output = gr.Textbox(label="Recognized speech from uploaded file") uploaded_html_info = gr.HTML(label="Info") with gr.TabItem("Record from microphone"): microphone = gr.Audio( sources=["microphone"], # Choose between "microphone", "upload" type="filepath", label="Record from microphone", ) record_button = gr.Button("Submit for recognition") recorded_output = gr.Textbox(label="Recognized speech from recordings") recorded_html_info = gr.HTML(label="Info") with gr.TabItem("From URL"): url_textbox = gr.Textbox( max_lines=1, placeholder="URL to an audio file", label="URL", interactive=True, ) url_button = gr.Button("Submit for recognition") url_output = gr.Textbox(label="Recognized speech from URL") url_html_info = gr.HTML(label="Info") upload_button.click( process_uploaded_file, inputs=[ model_dropdown, uploaded_file, ], outputs=[uploaded_output, uploaded_html_info], ) record_button.click( process_microphone, inputs=[ model_dropdown, microphone, ], outputs=[recorded_output, recorded_html_info], ) url_button.click( process_url, inputs=[ model_dropdown, url_textbox, ], outputs=[url_output, url_html_info], ) gr.Markdown(description) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) demo.launch()