# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import lru_cache from huggingface_hub import hf_hub_download import sherpa_onnx import numpy as np from typing import Tuple import wave sample_rate = 16000 def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]: """ Args: wave_filename: Path to a wave file. It should be single channel and each sample should be 16-bit. Its sample rate does not need to be 16kHz. Returns: Return a tuple containing: - A 1-D array of dtype np.float32 containing the samples, which are normalized to the range [-1, 1]. - sample rate of the wave file """ with wave.open(wave_filename) as f: assert f.getnchannels() == 1, f.getnchannels() assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes num_samples = f.getnframes() samples = f.readframes(num_samples) samples_int16 = np.frombuffer(samples, dtype=np.int16) samples_float32 = samples_int16.astype(np.float32) samples_float32 = samples_float32 / 32768 return samples_float32, f.getframerate() def decode( recognizer: sherpa_onnx.OfflineRecognizer, filename: str, ) -> str: s = recognizer.create_stream() samples, sample_rate = read_wave(filename) s.accept_waveform(sample_rate, samples) recognizer.decode_stream(s) return s.result.text.lower() def _get_nn_model_filename( repo_id: str, filename: str, subfolder: str = ".", ) -> str: nn_model_filename = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder, ) return nn_model_filename def _get_token_filename( repo_id: str, filename: str, subfolder: str = ".", ) -> str: token_filename = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder, ) return token_filename @lru_cache(maxsize=8) def get_pretrained_model(name: str) -> sherpa_onnx.OfflineRecognizer: assert name in ( "tiny.en", "base.en", "small.en", "medium.en", "tiny", "base", "small", "medium", ), name full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name encoder = _get_nn_model_filename( repo_id=full_repo_id, filename=f"{name}-encoder.int8.onnx", ) decoder = _get_nn_model_filename( repo_id=full_repo_id, filename=f"{name}-decoder.int8.onnx", ) tokens = _get_token_filename(repo_id=full_repo_id, filename=f"{name}-tokens.txt") recognizer = sherpa_onnx.OfflineRecognizer.from_whisper( encoder=encoder, decoder=decoder, tokens=tokens, num_threads=2, ) return recognizer whisper_models = { "tiny.en": get_pretrained_model, "base.en": get_pretrained_model, "small.en": get_pretrained_model, "medium.en": get_pretrained_model, "distil-medium.en": get_pretrained_model, "tiny": get_pretrained_model, "base": get_pretrained_model, "small": get_pretrained_model, "distil-small.en": get_pretrained_model, "medium": get_pretrained_model, }