import gradio as gr import cv2 import numpy import os import random from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.download_util import load_file_from_url from realesrgan import RealESRGANer from realesrgan.archs.srvgg_arch import SRVGGNetCompact last_file = None img_mode = "RGBA" def realesrgan(img, model_name, denoise_strength, face_enhance, outscale, ext): """Real-ESRGAN function to restore (and upscale) images. """ if not img: return # Define model parameters if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'] elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth'] elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) netscale = 4 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth'] elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) netscale = 2 file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth'] elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size) model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') netscale = 4 file_url = [ 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth', 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth' ] # Determine model paths model_path = os.path.join('weights', model_name + '.pth') if not os.path.isfile(model_path): ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) for url in file_url: # model_path will be updated model_path = load_file_from_url( url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None) # Use dni to control the denoise strength dni_weight = None if model_name == 'realesr-general-x4v3' and denoise_strength != 1: wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3') model_path = [model_path, wdn_model_path] dni_weight = [denoise_strength, 1 - denoise_strength] # Restorer Class upsampler = RealESRGANer( scale=netscale, model_path=model_path, dni_weight=dni_weight, model=model, tile=0, tile_pad=10, pre_pad=10, half=False, gpu_id=None ) # Use GFPGAN for face enhancement if face_enhance: from gfpgan import GFPGANer face_enhancer = GFPGANer( model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth', upscale=outscale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) # Convert the input PIL image to cv2 image, so that it can be processed by realesrgan cv_img = numpy.array(img) img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA) # Apply restoration try: if face_enhance: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) else: output, _ = upsampler.enhance(img, outscale=outscale) except RuntimeError as error: print('Error', error) print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') else: # Save restored image and return it to the output Image component if img_mode == 'RGBA': # RGBA images should be saved in png format extension = 'png' else: extension = 'jpg' #out_filename = f"output_{rnd_string(8)}.{extension}" out_filename = f"output_{rnd_string(8)}." + ext cv2.imwrite(out_filename, output) global last_file last_file = out_filename return out_filename def rnd_string(x): """Returns a string of 'x' random characters """ characters = "abcdefghijklmnopqrstuvwxyz_0123456789" result = "".join((random.choice(characters)) for i in range(x)) return result def reset(): """Resets the Image components of the Gradio interface and deletes the last processed image """ global last_file if last_file: print(f"Deleting {last_file} ...") os.remove(last_file) last_file = None return gr.update(value=None), gr.update(value=None) def has_transparency(img): """This function works by first checking to see if a "transparency" property is defined in the image's info -- if so, we return "True". Then, if the image is using indexed colors (such as in GIFs), it gets the index of the transparent color in the palette (img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas (img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in it, but it double-checks by getting the minimum and maximum values of every color channel (img.getextrema()), and checks if the alpha channel's smallest value falls below 255. https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent """ if img.info.get("transparency", None) is not None: return True if img.mode == "P": transparent = img.info.get("transparency", -1) for _, index in img.getcolors(): if index == transparent: return True elif img.mode == "RGBA": extrema = img.getextrema() if extrema[3][0] < 255: return True return False def image_properties(img): """Returns the dimensions (width and height) and color mode of the input image and also sets the global img_mode variable to be used by the realesrgan function """ global img_mode if img: if has_transparency(img): img_mode = "RGBA" else: img_mode = "RGB" properties = f"Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}" return properties def image_parameters(img): if img: try: parameters = img.info['parameters'] except: parameters ='' return parameters def main(): # Gradio Interface with gr.Blocks(title="Upscaling Service") as demo: gr.Markdown( """This Space is a fork of "Real-ESRGAN-Demo", so if you want to use it please refer to [havas79/Real-ESRGAN_Demo](https://huggingface.co/spaces/havas79/Real-ESRGAN_Demo), thank you!""" ) with gr.Accordion("Options/Parameters"): with gr.Row(): model_name = gr.Dropdown(label="Real-ESRGAN inference model to be used", choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B", "RealESRGAN_x2plus", "realesr-general-x4v3"], value="realesr-general-x4v3", show_label=True) denoise_strength = gr.Slider(label="Denoise Strength (Used only with the realesr-general-x4v3 model)", minimum=0, maximum=1, step=0.1, value=0.5) outscale = gr.Slider(label="Image Upscaling Factor", minimum=1, maximum=10, step=1, value=4, show_label=True) face_enhance = gr.Checkbox(label="Face Enhancement using GFPGAN (Doesn't work for anime images)", value=False, show_label=True) ext = gr.Dropdown(label="Output Ext", choices=["png", "jpg"], value="png", show_label=True) with gr.Row(): with gr.Group(): input_image = gr.Image(label="Source Image", type="pil", image_mode="RGBA") input_image_properties = gr.Textbox(label="Image Properties", max_lines=1) input_image_parameters = gr.TextArea(label="Image Parameters", lines=10) output_image = gr.Image(label="Restored Image", image_mode="RGBA", show_share_button=False) with gr.Row(): restore_btn = gr.Button("Upscale") # Event listeners: input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties) input_image.change(fn=image_parameters, inputs=input_image, outputs=input_image_parameters) restore_btn.click(fn=realesrgan, inputs=[input_image, model_name, denoise_strength, face_enhance, outscale, ext], outputs=output_image, api_name="upscale") gr.Markdown( """*Please note that support for animated GIFs is not yet implemented. Should an animated GIF is chosen for restoration, the demo will output only the first frame saved in PNG format (to preserve probable transparency).* """ ) demo.launch() if __name__ == "__main__": main()