from transformers import pipeline import torch from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import gradio as gr import gradio as gr device = 0 if torch.cuda.is_available() else "cpu" MODEL_ID = "wav2vec2-base-vinyl_condition" pipe = pipeline( task="audio-classification", model=MODEL_ID, chunk_length_s=30, device=device, ) def get_vinyl_condition(filepath): output = pipe( filepath, max_new_tokens=256, chunk_length_s=30, batch_size=8, ) return output[0]["label"] demo = gr.Blocks() demo = gr.Blocks() file_transcribe = gr.Interface( fn=get_vinyl_condition, inputs=[ gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"), ], outputs="text", layout="horizontal", theme="huggingface", title="Vinyl Demo: Get Vinyl Condition", description=( "Get your vinyl ocndition based on the golmine grading starndard! Demo uses the" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to get the condition of audio files" " of arbitrary length." ), examples=[ ["./example.flac"], ], cache_examples=True, allow_flagging="never", ) with demo: gr.TabbedInterface([file_transcribe], ["Transcribe Audio File"]) demo.launch(enable_queue=True)