Spaces:
Sleeping
Sleeping
Commit
·
5fb3911
1
Parent(s):
376f45a
added analysis
Browse files
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
app.py
CHANGED
|
@@ -12,7 +12,8 @@ import random
|
|
| 12 |
import mdpd
|
| 13 |
import os
|
| 14 |
|
| 15 |
-
from utils import getaudiodata, getBeats, plotBeattimes, find_s1s2
|
|
|
|
| 16 |
|
| 17 |
example_dir = "Examples"
|
| 18 |
example_files = [os.path.join(example_dir, f) for f in os.listdir(example_dir) if f.endswith(('.wav', '.mp3', '.ogg'))]
|
|
@@ -20,6 +21,10 @@ all_pairs = list(itertools.combinations(example_files, 2))
|
|
| 20 |
random.shuffle(all_pairs)
|
| 21 |
example_pairs = [list(pair) for pair in all_pairs[:25]]
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def getHRV(beattimes: np.ndarray) -> np.ndarray:
|
| 24 |
# Calculate instantaneous heart rate
|
| 25 |
instantaneous_hr = 60 * np.diff(beattimes)
|
|
@@ -67,7 +72,7 @@ def create_average_heartbeat(audiodata, sr):
|
|
| 67 |
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS
|
| 68 |
def plotCombined(audiodata, sr, filename):
|
| 69 |
# Get beat times
|
| 70 |
-
tempo, beattimes = getBeats(audiodata, sr)
|
| 71 |
|
| 72 |
# Create subplots
|
| 73 |
fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.1,
|
|
@@ -135,7 +140,7 @@ def analyze_single(audio:gr.Audio):
|
|
| 135 |
filename = filepath.split("/")[-1]
|
| 136 |
|
| 137 |
|
| 138 |
-
sr, audiodata = getaudiodata(filepath)
|
| 139 |
|
| 140 |
|
| 141 |
# Now you have:
|
|
@@ -154,7 +159,7 @@ def analyze_single(audio:gr.Audio):
|
|
| 154 |
rms = librosa.feature.rms(y=audiodata)[0]
|
| 155 |
# print(f"Mean RMS Energy: {np.mean(rms):.4f}")
|
| 156 |
|
| 157 |
-
tempo, beattimes = getBeats(audiodata, sr)
|
| 158 |
spectogram_wave = plotCombined(audiodata, sr, filename)
|
| 159 |
#beats_histogram = plotbeatscatter(tempo[0], beattimes)
|
| 160 |
|
|
@@ -180,19 +185,207 @@ def analyze_single(audio:gr.Audio):
|
|
| 180 |
- Mean Beat Duration: {np.mean(np.diff(beattimes)):.4f}
|
| 181 |
"""
|
| 182 |
return results, spectogram_wave, avg_beat_plot
|
|
|
|
| 183 |
#-----------------------------------------------
|
|
|
|
| 184 |
#-----------------------------------------------
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS V2
|
| 187 |
|
| 188 |
def getBeatsv2(audio:gr.Audio):
|
| 189 |
|
| 190 |
-
sr, audiodata = getaudiodata(audio)
|
| 191 |
-
_, beattimes, audiodata = getBeats(audiodata, sr)
|
| 192 |
|
| 193 |
beattimes_table = pd.DataFrame(data={"Beattimes":beattimes})
|
| 194 |
|
| 195 |
-
feature_array = find_s1s2(beattimes_table)
|
| 196 |
|
| 197 |
featuredf = pd.DataFrame(
|
| 198 |
data=feature_array,
|
|
@@ -200,7 +393,7 @@ def getBeatsv2(audio:gr.Audio):
|
|
| 200 |
"Beattimes",
|
| 201 |
"S1 to S2",
|
| 202 |
"S2 to S1",
|
| 203 |
-
"Label (S1=
|
| 204 |
)
|
| 205 |
|
| 206 |
# Create boolean masks for each label
|
|
@@ -211,7 +404,7 @@ def getBeatsv2(audio:gr.Audio):
|
|
| 211 |
times_label_one = feature_array[mask_ones, 0]
|
| 212 |
times_label_zero = feature_array[mask_zeros, 0]
|
| 213 |
|
| 214 |
-
fig = plotBeattimes(times_label_one, audiodata, sr, times_label_zero)
|
| 215 |
|
| 216 |
|
| 217 |
featuredf = featuredf.drop(columns=["S1 to S2", "S2 to S1"])
|
|
@@ -221,7 +414,7 @@ def getBeatsv2(audio:gr.Audio):
|
|
| 221 |
|
| 222 |
def updateBeatsv2(audio:gr.Audio, uploadeddf:gr.File=None)-> go.Figure:
|
| 223 |
|
| 224 |
-
sr, audiodata = getaudiodata(audio)
|
| 225 |
|
| 226 |
|
| 227 |
if uploadeddf != None:
|
|
@@ -233,10 +426,10 @@ def updateBeatsv2(audio:gr.Audio, uploadeddf:gr.File=None)-> go.Figure:
|
|
| 233 |
else:
|
| 234 |
raise FileNotFoundError("No file uploaded")
|
| 235 |
|
| 236 |
-
s1_times = beattimes_table[beattimes_table["Label (S1=
|
| 237 |
-
s2_times = beattimes_table[beattimes_table["Label (S1=
|
| 238 |
|
| 239 |
-
fig = plotBeattimes(s1_times, audiodata, sr, s2_times)
|
| 240 |
|
| 241 |
return fig, beattimes_table.to_markdown()
|
| 242 |
|
|
@@ -244,7 +437,7 @@ def download_df (beattimes_table: str):
|
|
| 244 |
|
| 245 |
df = mdpd.from_md(beattimes_table)
|
| 246 |
df['Beattimes'] = df['Beattimes'].astype(float)
|
| 247 |
-
df['Label (S1=
|
| 248 |
|
| 249 |
|
| 250 |
temp_dir = tempfile.gettempdir()
|
|
@@ -253,7 +446,7 @@ def download_df (beattimes_table: str):
|
|
| 253 |
|
| 254 |
df.to_csv(
|
| 255 |
index=False,
|
| 256 |
-
columns=["Beattimes", "Label (S1=
|
| 257 |
path_or_buf=temp_path,
|
| 258 |
sep=";",
|
| 259 |
decimal=",",
|
|
@@ -316,5 +509,11 @@ with gr.Blocks() as app:
|
|
| 316 |
|
| 317 |
gr.Markdown("🚨 Please make sure to first run the 'Preprocessing'")
|
| 318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
app.launch()
|
|
|
|
| 12 |
import mdpd
|
| 13 |
import os
|
| 14 |
|
| 15 |
+
#from utils import getaudiodata, getBeats, plotBeattimes, find_s1s2
|
| 16 |
+
import utils as u
|
| 17 |
|
| 18 |
example_dir = "Examples"
|
| 19 |
example_files = [os.path.join(example_dir, f) for f in os.listdir(example_dir) if f.endswith(('.wav', '.mp3', '.ogg'))]
|
|
|
|
| 21 |
random.shuffle(all_pairs)
|
| 22 |
example_pairs = [list(pair) for pair in all_pairs[:25]]
|
| 23 |
|
| 24 |
+
|
| 25 |
+
#-----------------------------------------------
|
| 26 |
+
# PROCESSING FUNCTIONS
|
| 27 |
+
#-----------------------------------------------
|
| 28 |
def getHRV(beattimes: np.ndarray) -> np.ndarray:
|
| 29 |
# Calculate instantaneous heart rate
|
| 30 |
instantaneous_hr = 60 * np.diff(beattimes)
|
|
|
|
| 72 |
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS
|
| 73 |
def plotCombined(audiodata, sr, filename):
|
| 74 |
# Get beat times
|
| 75 |
+
tempo, beattimes = u.getBeats(audiodata, sr)
|
| 76 |
|
| 77 |
# Create subplots
|
| 78 |
fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.1,
|
|
|
|
| 140 |
filename = filepath.split("/")[-1]
|
| 141 |
|
| 142 |
|
| 143 |
+
sr, audiodata = u.getaudiodata(filepath)
|
| 144 |
|
| 145 |
|
| 146 |
# Now you have:
|
|
|
|
| 159 |
rms = librosa.feature.rms(y=audiodata)[0]
|
| 160 |
# print(f"Mean RMS Energy: {np.mean(rms):.4f}")
|
| 161 |
|
| 162 |
+
tempo, beattimes = u.getBeats(audiodata, sr)
|
| 163 |
spectogram_wave = plotCombined(audiodata, sr, filename)
|
| 164 |
#beats_histogram = plotbeatscatter(tempo[0], beattimes)
|
| 165 |
|
|
|
|
| 185 |
- Mean Beat Duration: {np.mean(np.diff(beattimes)):.4f}
|
| 186 |
"""
|
| 187 |
return results, spectogram_wave, avg_beat_plot
|
| 188 |
+
|
| 189 |
#-----------------------------------------------
|
| 190 |
+
# ANALYSIS FUNCTIONS
|
| 191 |
#-----------------------------------------------
|
| 192 |
|
| 193 |
+
# - [ ] Berechnungen Pro Segement:
|
| 194 |
+
# - [ ] RMS Energy
|
| 195 |
+
# - [ ] Frequenzen
|
| 196 |
+
# - [ ] Dauer
|
| 197 |
+
# - [ ] S2 - wenn möglich
|
| 198 |
+
# - [ ] Dauer S1 bis S2 (S1)
|
| 199 |
+
# - [ ] Dauer S2 bis S1 (S2)
|
| 200 |
+
# - [ ] Visualisierungen pro Datei:
|
| 201 |
+
# - [ ] Waveform
|
| 202 |
+
# - [ ] Spectogram
|
| 203 |
+
# - [ ] HRV
|
| 204 |
+
# - [ ] Avg. Heartbeat Waveform (fixe y-achse)
|
| 205 |
+
# - [ ] Alle Segmente als Waveform übereinanderlegen (fixe y-achse +-0.05)
|
| 206 |
+
# - [ ] Daten Exportierbar machen
|
| 207 |
+
# - [ ] Einheiten für (RMS Energy, Energy)
|
| 208 |
+
# - [ ] wichtige Einheiten (Energy, RMS Energy, Sample Rate, Audio length, Beats, Beats durations)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def get_visualizations(beattimes_table: str, cleanedaudio: gr.Audio):
|
| 212 |
+
|
| 213 |
+
df = mdpd.from_md(beattimes_table)
|
| 214 |
+
df['Beattimes'] = df['Beattimes'].astype(float)
|
| 215 |
+
df['Label (S1=1/S2=0)'] = df['Label (S1=1/S2=0)'].astype(int)
|
| 216 |
+
|
| 217 |
+
sr, audiodata = cleanedaudio
|
| 218 |
+
|
| 219 |
+
segment_metrics = u.compute_segment_metrics(df, sr, audiodata)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
# Normalize audio data from int16 to float in range [-1, 1]
|
| 224 |
+
audiodata = audiodata.astype(np.float32) / 32768.0
|
| 225 |
+
|
| 226 |
+
# Create figure with secondary y-axes
|
| 227 |
+
fig = make_subplots(
|
| 228 |
+
rows=5, cols=1,
|
| 229 |
+
subplot_titles=('Waveform', 'Spectrogram', 'Heart Rate Variability',
|
| 230 |
+
'Average Heartbeat Waveform', 'Overlaid Segments'),
|
| 231 |
+
vertical_spacing=0.1,
|
| 232 |
+
row_heights=[0.2, 0.2, 0.2, 0.2, 0.2]
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# 1. Waveform
|
| 236 |
+
time = np.arange(len(audiodata)) / sr
|
| 237 |
+
fig.add_trace(
|
| 238 |
+
go.Scatter(x=time, y=audiodata, name='Waveform', line=dict(color='blue', width=1)),
|
| 239 |
+
row=1, col=1
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
# 2. Spectrogram
|
| 244 |
+
D = librosa.stft(audiodata)
|
| 245 |
+
frequencies = librosa.fft_frequencies(sr=sr) # Get frequency values for y-axis
|
| 246 |
+
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
| 247 |
+
times = librosa.times_like(S_db, sr=sr) # Get time values for x-axis
|
| 248 |
+
|
| 249 |
+
# Find index corresponding to 200 Hz
|
| 250 |
+
freq_mask = frequencies <= 1000
|
| 251 |
+
S_db_cropped = S_db[freq_mask]
|
| 252 |
+
frequencies_cropped = frequencies[freq_mask]
|
| 253 |
+
|
| 254 |
+
fig.add_trace(
|
| 255 |
+
go.Heatmap(
|
| 256 |
+
z=S_db_cropped,
|
| 257 |
+
x=times,
|
| 258 |
+
y=frequencies_cropped, # Add frequencies to y-axis
|
| 259 |
+
colorscale='Viridis',
|
| 260 |
+
name='Spectrogram'
|
| 261 |
+
),
|
| 262 |
+
row=2, col=1
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# 3. HRV (Heart Rate Variability)
|
| 266 |
+
s1_durations = []
|
| 267 |
+
s2_durations = []
|
| 268 |
+
for segment in segment_metrics:
|
| 269 |
+
if segment['s1_to_s2_duration']: # Check if list is not empty
|
| 270 |
+
s1_durations.extend(segment['s1_to_s2_duration'])
|
| 271 |
+
if segment['s2_to_s1_duration']: # Check if list is not empty
|
| 272 |
+
s2_durations.extend(segment['s2_to_s1_duration'])
|
| 273 |
+
|
| 274 |
+
t_interp, sdnn_interp, rmssd_interp, hr_interp = u.compute_and_plot_hrv(s1_durations, s2_durations, sr)
|
| 275 |
+
|
| 276 |
+
# Add each HRV metric as a separate trace
|
| 277 |
+
fig.add_trace(
|
| 278 |
+
go.Scatter(
|
| 279 |
+
x=t_interp,
|
| 280 |
+
y=sdnn_interp,
|
| 281 |
+
name='SDNN',
|
| 282 |
+
line=dict(color='red', width=1)
|
| 283 |
+
),
|
| 284 |
+
row=3, col=1
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
fig.add_trace(
|
| 288 |
+
go.Scatter(
|
| 289 |
+
x=t_interp,
|
| 290 |
+
y=rmssd_interp,
|
| 291 |
+
name='RMSSD',
|
| 292 |
+
line=dict(color='blue', width=1)
|
| 293 |
+
),
|
| 294 |
+
row=3, col=1
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
fig.add_trace(
|
| 298 |
+
go.Scatter(
|
| 299 |
+
x=t_interp,
|
| 300 |
+
y=hr_interp,
|
| 301 |
+
name='Heart Rate',
|
| 302 |
+
line=dict(color='green', width=1),
|
| 303 |
+
yaxis='y2' # Use secondary y-axis for heart rate
|
| 304 |
+
),
|
| 305 |
+
row=3, col=1
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
# 4. Average Heartbeat Waveform
|
| 310 |
+
max_len = max(len(metric['segment']) for metric in segment_metrics)
|
| 311 |
+
aligned_segments = []
|
| 312 |
+
|
| 313 |
+
for metric in segment_metrics:
|
| 314 |
+
segment = metric['segment']
|
| 315 |
+
segment = segment.astype(np.float32) / 32768.0
|
| 316 |
+
padded = np.pad(segment, (0, max_len - len(segment)))
|
| 317 |
+
aligned_segments.append(padded)
|
| 318 |
+
|
| 319 |
+
avg_waveform = np.mean(aligned_segments, axis=0)
|
| 320 |
+
time_avg = np.arange(len(avg_waveform)) / sr
|
| 321 |
+
|
| 322 |
+
fig.add_trace(
|
| 323 |
+
go.Scatter(x=time_avg, y=avg_waveform, name='Average Heartbeat',
|
| 324 |
+
line=dict(color='green', width=1)),
|
| 325 |
+
row=4, col=1
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
# 5. Overlaid Segments
|
| 329 |
+
colors = [
|
| 330 |
+
'#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
|
| 331 |
+
'#fdb462', '#b3de69', '#fccde5', '#d9d9d9', '#bc80bd'
|
| 332 |
+
]
|
| 333 |
+
|
| 334 |
+
# Then in the loop for overlaid segments:
|
| 335 |
+
for i, metric in enumerate(segment_metrics):
|
| 336 |
+
segment = metric['segment']
|
| 337 |
+
segment = segment.astype(np.float32) / 32768.0
|
| 338 |
+
time_segment = np.arange(len(segment)) / sr
|
| 339 |
+
|
| 340 |
+
fig.add_trace(
|
| 341 |
+
go.Scatter(
|
| 342 |
+
x=time_segment,
|
| 343 |
+
y=segment,
|
| 344 |
+
name=f'Segment {i+1}',
|
| 345 |
+
opacity=0.3,
|
| 346 |
+
line=dict(color=colors[i % len(colors)], width=1)
|
| 347 |
+
),
|
| 348 |
+
row=5, col=1
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
# Update layout
|
| 352 |
+
fig.update_layout(
|
| 353 |
+
height=1500,
|
| 354 |
+
showlegend=False,
|
| 355 |
+
title_text="",
|
| 356 |
+
plot_bgcolor='white',
|
| 357 |
+
paper_bgcolor='white'
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
# Update y-axes for fixed scales where needed
|
| 362 |
+
# fig.update_yaxes(range=[-0.05, 0.05], row=5, col=1) # Fixed y-axis for overlaid segments
|
| 363 |
+
fig.update_yaxes(title_text="Amplitude", row=1, col=1, gridcolor='lightgray')
|
| 364 |
+
fig.update_yaxes(title_text="Frequency (Hz)", row=2, col=1)
|
| 365 |
+
fig.update_yaxes(title_text="Duration (s)", row=3, col=1, gridcolor='lightgray')
|
| 366 |
+
fig.update_yaxes(title_text="Amplitude", row=4, col=1, gridcolor='lightgray')
|
| 367 |
+
fig.update_yaxes(title_text="Amplitude", row=5, col=1, gridcolor='lightgray')
|
| 368 |
+
|
| 369 |
+
# Update x-axes
|
| 370 |
+
fig.update_xaxes(title_text="Time (s)", row=1, col=1, gridcolor='lightgray')
|
| 371 |
+
fig.update_xaxes(title_text="Time (s)", row=2, col=1)
|
| 372 |
+
fig.update_xaxes(title_text="Time (s)", row=3, col=1, gridcolor='lightgray')
|
| 373 |
+
fig.update_xaxes(title_text="Time (s)", row=4, col=1, gridcolor='lightgray')
|
| 374 |
+
fig.update_xaxes(title_text="Time (s)", row=5, col=1, gridcolor='lightgray')
|
| 375 |
+
|
| 376 |
+
return fig
|
| 377 |
+
#-----------------------------------------------
|
| 378 |
+
#-----------------------------------------------
|
| 379 |
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS V2
|
| 380 |
|
| 381 |
def getBeatsv2(audio:gr.Audio):
|
| 382 |
|
| 383 |
+
sr, audiodata = u.getaudiodata(audio)
|
| 384 |
+
_, beattimes, audiodata = u.getBeats(audiodata, sr)
|
| 385 |
|
| 386 |
beattimes_table = pd.DataFrame(data={"Beattimes":beattimes})
|
| 387 |
|
| 388 |
+
feature_array = u.find_s1s2(beattimes_table)
|
| 389 |
|
| 390 |
featuredf = pd.DataFrame(
|
| 391 |
data=feature_array,
|
|
|
|
| 393 |
"Beattimes",
|
| 394 |
"S1 to S2",
|
| 395 |
"S2 to S1",
|
| 396 |
+
"Label (S1=1/S2=0)"]
|
| 397 |
)
|
| 398 |
|
| 399 |
# Create boolean masks for each label
|
|
|
|
| 404 |
times_label_one = feature_array[mask_ones, 0]
|
| 405 |
times_label_zero = feature_array[mask_zeros, 0]
|
| 406 |
|
| 407 |
+
fig = u.plotBeattimes(times_label_one, audiodata, sr, times_label_zero)
|
| 408 |
|
| 409 |
|
| 410 |
featuredf = featuredf.drop(columns=["S1 to S2", "S2 to S1"])
|
|
|
|
| 414 |
|
| 415 |
def updateBeatsv2(audio:gr.Audio, uploadeddf:gr.File=None)-> go.Figure:
|
| 416 |
|
| 417 |
+
sr, audiodata = u.getaudiodata(audio)
|
| 418 |
|
| 419 |
|
| 420 |
if uploadeddf != None:
|
|
|
|
| 426 |
else:
|
| 427 |
raise FileNotFoundError("No file uploaded")
|
| 428 |
|
| 429 |
+
s1_times = beattimes_table[beattimes_table["Label (S1=1/S2=0)"] == 0]["Beattimes"].to_numpy()
|
| 430 |
+
s2_times = beattimes_table[beattimes_table["Label (S1=1/S2=0)"] == 1]["Beattimes"].to_numpy()
|
| 431 |
|
| 432 |
+
fig = u.plotBeattimes(s1_times, audiodata, sr, s2_times)
|
| 433 |
|
| 434 |
return fig, beattimes_table.to_markdown()
|
| 435 |
|
|
|
|
| 437 |
|
| 438 |
df = mdpd.from_md(beattimes_table)
|
| 439 |
df['Beattimes'] = df['Beattimes'].astype(float)
|
| 440 |
+
df['Label (S1=1/S2=0)'] = df['Label (S1=1/S2=0)'].astype(int)
|
| 441 |
|
| 442 |
|
| 443 |
temp_dir = tempfile.gettempdir()
|
|
|
|
| 446 |
|
| 447 |
df.to_csv(
|
| 448 |
index=False,
|
| 449 |
+
columns=["Beattimes", "Label (S1=1/S2=0)"],
|
| 450 |
path_or_buf=temp_path,
|
| 451 |
sep=";",
|
| 452 |
decimal=",",
|
|
|
|
| 509 |
|
| 510 |
gr.Markdown("🚨 Please make sure to first run the 'Preprocessing'")
|
| 511 |
|
| 512 |
+
analyzebtn = gr.Button("Analyze Audio")
|
| 513 |
+
|
| 514 |
+
plot = gr.Plot()
|
| 515 |
+
|
| 516 |
+
analyzebtn.click(get_visualizations, inputs=[beattimes_table, cleanedaudio], outputs=[plot])
|
| 517 |
+
|
| 518 |
|
| 519 |
app.launch()
|
utils.py
CHANGED
|
@@ -7,6 +7,8 @@ from sklearn.cluster import KMeans
|
|
| 7 |
from sklearn.preprocessing import StandardScaler
|
| 8 |
import pywt
|
| 9 |
import pandas as pd
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
# GENERAL HELPER FUNCTIONS
|
|
@@ -71,7 +73,7 @@ def denoise_audio(audiodata: np.ndarray, sr: int) -> tuple[np.ndarray, int]:
|
|
| 71 |
|
| 72 |
# Ensure consistent length
|
| 73 |
if len(denoised) != len(audio):
|
| 74 |
-
denoised = librosa.util.fix_length(denoised, len(audio))
|
| 75 |
|
| 76 |
# 3. Improved Spectral Subtraction
|
| 77 |
def spectral_subtract(sig):
|
|
@@ -442,30 +444,47 @@ def plotBeattimes(beattimes: np.ndarray,
|
|
| 442 |
|
| 443 |
def iterate_beat_segments(beat_times, sr, audio):
|
| 444 |
"""
|
| 445 |
-
Iterate over audio segments between beats.
|
| 446 |
|
| 447 |
Parameters:
|
| 448 |
-
- beat_times:
|
| 449 |
- sr: Sample rate of the audio
|
| 450 |
- audio: np.ndarray of audio data
|
| 451 |
|
| 452 |
Yields:
|
| 453 |
-
-
|
| 454 |
"""
|
| 455 |
-
# Convert beat times to sample indices
|
| 456 |
-
beat_samples = librosa.time_to_samples(beat_times, sr=sr)
|
| 457 |
|
| 458 |
-
#
|
| 459 |
-
|
|
|
|
|
|
|
| 460 |
|
| 461 |
-
# Iterate
|
| 462 |
-
for
|
| 463 |
-
|
| 464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
|
| 466 |
-
|
| 467 |
|
| 468 |
-
def segment_analysis(segment, sr):
|
| 469 |
"""
|
| 470 |
Analyze an audio segment and compute various metrics.
|
| 471 |
|
|
@@ -487,25 +506,28 @@ def segment_analysis(segment, sr):
|
|
| 487 |
fft_magnitudes = np.abs(np.fft.rfft(segment))
|
| 488 |
mean_frequency = np.mean(fft_magnitudes)
|
| 489 |
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
return [
|
| 503 |
-
rms_energy,
|
| 504 |
-
mean_frequency,
|
| 505 |
-
duration,
|
| 506 |
-
s1_to_s2_duration,
|
| 507 |
-
s2_to_s1_duration
|
| 508 |
-
]
|
| 509 |
|
| 510 |
def find_s1s2(df:pd.DataFrame):
|
| 511 |
|
|
@@ -543,3 +565,39 @@ def find_s1s2(df:pd.DataFrame):
|
|
| 543 |
|
| 544 |
return feature_array
|
| 545 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from sklearn.preprocessing import StandardScaler
|
| 8 |
import pywt
|
| 9 |
import pandas as pd
|
| 10 |
+
from scipy.interpolate import interp1d
|
| 11 |
+
|
| 12 |
|
| 13 |
|
| 14 |
# GENERAL HELPER FUNCTIONS
|
|
|
|
| 73 |
|
| 74 |
# Ensure consistent length
|
| 75 |
if len(denoised) != len(audio):
|
| 76 |
+
denoised = librosa.util.fix_length(denoised, size=len(audio))
|
| 77 |
|
| 78 |
# 3. Improved Spectral Subtraction
|
| 79 |
def spectral_subtract(sig):
|
|
|
|
| 444 |
|
| 445 |
def iterate_beat_segments(beat_times, sr, audio):
|
| 446 |
"""
|
| 447 |
+
Iterate over audio segments between beats marked with label 1.
|
| 448 |
|
| 449 |
Parameters:
|
| 450 |
+
- beat_times: df of beattimes and labels as DataFrame
|
| 451 |
- sr: Sample rate of the audio
|
| 452 |
- audio: np.ndarray of audio data
|
| 453 |
|
| 454 |
Yields:
|
| 455 |
+
- List of segment metrics with associated beat information
|
| 456 |
"""
|
|
|
|
|
|
|
| 457 |
|
| 458 |
+
# Get indices where label is 1
|
| 459 |
+
label_ones = beat_times[beat_times['Label (S1=1/S2=0)'] == 1].index.tolist()
|
| 460 |
+
|
| 461 |
+
segment_metrics = []
|
| 462 |
|
| 463 |
+
# Iterate through pairs of label 1 indices
|
| 464 |
+
for i in range(len(label_ones) - 1):
|
| 465 |
+
start_idx = label_ones[i]
|
| 466 |
+
end_idx = label_ones[i + 1]
|
| 467 |
+
|
| 468 |
+
# Get all beats between two label 1 beats (inclusive)
|
| 469 |
+
segment_beats = beat_times.iloc[start_idx:end_idx + 1]
|
| 470 |
+
|
| 471 |
+
# Create list of tuples (label, beattime)
|
| 472 |
+
beat_info = list(zip(segment_beats['Label (S1=1/S2=0)'],
|
| 473 |
+
segment_beats['Beattimes']))
|
| 474 |
+
|
| 475 |
+
# Get start and end samples
|
| 476 |
+
start_sample = librosa.time_to_samples(segment_beats.iloc[0]['Beattimes'], sr=sr)
|
| 477 |
+
end_sample = librosa.time_to_samples(segment_beats.iloc[-1]['Beattimes'], sr=sr)
|
| 478 |
+
|
| 479 |
+
# Extract audio segment
|
| 480 |
+
segment = audio[start_sample:end_sample]
|
| 481 |
+
|
| 482 |
+
# Analyze segment with beat information
|
| 483 |
+
segment_metrics.append(segment_analysis(segment, sr, beat_info))
|
| 484 |
|
| 485 |
+
return segment_metrics
|
| 486 |
|
| 487 |
+
def segment_analysis(segment, sr, s1s2:list):
|
| 488 |
"""
|
| 489 |
Analyze an audio segment and compute various metrics.
|
| 490 |
|
|
|
|
| 506 |
fft_magnitudes = np.abs(np.fft.rfft(segment))
|
| 507 |
mean_frequency = np.mean(fft_magnitudes)
|
| 508 |
|
| 509 |
+
s1_to_s2_duration = []
|
| 510 |
+
s2_to_s1_duration = []
|
| 511 |
+
|
| 512 |
+
prev = s1s2[0]
|
| 513 |
+
for i in range(1, len(s1s2)):
|
| 514 |
+
if prev[0] == 0 and s1s2[i][0] == 1:
|
| 515 |
+
s2_to_s1_duration.append(s1s2[i][1] - prev[1])
|
| 516 |
+
elif prev[0] == 1 and s1s2[i][0] == 0:
|
| 517 |
+
s1_to_s2_duration.append(s1s2[i][1] - prev[1])
|
| 518 |
+
prev = s1s2[i]
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
|
| 522 |
|
| 523 |
+
return {
|
| 524 |
+
"rms_energy": rms_energy,
|
| 525 |
+
"mean_frequency": mean_frequency,
|
| 526 |
+
"duration": duration,
|
| 527 |
+
"s1_to_s2_duration": s1_to_s2_duration,
|
| 528 |
+
"s2_to_s1_duration": s2_to_s1_duration,
|
| 529 |
+
"segment": segment
|
| 530 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
|
| 532 |
def find_s1s2(df:pd.DataFrame):
|
| 533 |
|
|
|
|
| 565 |
|
| 566 |
return feature_array
|
| 567 |
|
| 568 |
+
# ANALYZE
|
| 569 |
+
|
| 570 |
+
def compute_segment_metrics(beattimes: pd.DataFrame, sr: int, audio: np.ndarray):
|
| 571 |
+
|
| 572 |
+
beattimes[beattimes['Label (S1=1/S2=0)'] == 1]
|
| 573 |
+
|
| 574 |
+
segment_metrics = iterate_beat_segments(beattimes, sr, audio)
|
| 575 |
+
|
| 576 |
+
return segment_metrics
|
| 577 |
+
|
| 578 |
+
def compute_and_plot_hrv(s1_to_s2, s2_to_s1, sampling_rate=1000):
|
| 579 |
+
# Combine s1_to_s2 and s2_to_s1 to get RR intervals
|
| 580 |
+
rr_intervals = np.array(s1_to_s2) + np.array(s2_to_s1)
|
| 581 |
+
|
| 582 |
+
# Calculate cumulative time for each heartbeat
|
| 583 |
+
time = np.cumsum(rr_intervals) / sampling_rate # Convert to seconds
|
| 584 |
+
|
| 585 |
+
# Calculate instantaneous heart rate
|
| 586 |
+
hr = 60 / rr_intervals # beats per minute
|
| 587 |
+
|
| 588 |
+
# Compute rolling window HRV metrics
|
| 589 |
+
window_size = 30 # 30-second window
|
| 590 |
+
sdnn = np.array([np.std(rr_intervals[max(0, i-window_size):i+1])
|
| 591 |
+
for i in range(len(rr_intervals))])
|
| 592 |
+
rmssd = np.array([np.sqrt(np.mean(np.diff(rr_intervals[max(0, i-window_size):i+1])**2))
|
| 593 |
+
for i in range(len(rr_intervals))])
|
| 594 |
+
|
| 595 |
+
# Create evenly spaced time array for plotting
|
| 596 |
+
t_interp = np.linspace(time.min(), time.max(), num=1000)
|
| 597 |
+
|
| 598 |
+
# Interpolate HRV metrics for smooth plotting
|
| 599 |
+
sdnn_interp = interp1d(time, sdnn, kind='cubic')(t_interp)
|
| 600 |
+
rmssd_interp = interp1d(time, rmssd, kind='cubic')(t_interp)
|
| 601 |
+
hr_interp = interp1d(time, hr, kind='cubic')(t_interp)
|
| 602 |
+
|
| 603 |
+
return t_interp, sdnn_interp, rmssd_interp, hr_interp
|