junyangwang0410 commited on
Commit
b4af017
·
verified ·
1 Parent(s): 43c0e1c

Update MobileAgent/crop.py

Browse files
Files changed (1) hide show
  1. MobileAgent/crop.py +0 -52
MobileAgent/crop.py CHANGED
@@ -2,8 +2,6 @@ import math
2
  import cv2
3
  import numpy as np
4
  from PIL import Image, ImageDraw, ImageFont
5
- import clip
6
- import torch
7
 
8
 
9
  def crop_image(img, position):
@@ -89,53 +87,3 @@ def in_box(box, target):
89
  return True
90
  else:
91
  return False
92
-
93
-
94
- def crop_for_clip(image, box, i, position):
95
- image = Image.open(image)
96
- w, h = image.size
97
- if position == "left":
98
- bound = [0, 0, w/2, h]
99
- elif position == "right":
100
- bound = [w/2, 0, w, h]
101
- elif position == "top":
102
- bound = [0, 0, w, h/2]
103
- elif position == "bottom":
104
- bound = [0, h/2, w, h]
105
- elif position == "top left":
106
- bound = [0, 0, w/2, h/2]
107
- elif position == "top right":
108
- bound = [w/2, 0, w, h/2]
109
- elif position == "bottom left":
110
- bound = [0, h/2, w/2, h]
111
- elif position == "bottom right":
112
- bound = [w/2, h/2, w, h]
113
- else:
114
- bound = [0, 0, w, h]
115
-
116
- if in_box(box, bound):
117
- cropped_image = image.crop(box)
118
- cropped_image.save(f"./temp/{i}.jpg")
119
- return True
120
- else:
121
- return False
122
-
123
-
124
- def clip_for_icon(clip_model, clip_preprocess, images, prompt):
125
- image_features = []
126
- for image_file in images:
127
- image = clip_preprocess(Image.open(image_file)).unsqueeze(0).to(next(clip_model.parameters()).device)
128
- image_feature = clip_model.encode_image(image)
129
- image_features.append(image_feature)
130
- image_features = torch.cat(image_features)
131
-
132
- text = clip.tokenize([prompt]).to(next(clip_model.parameters()).device)
133
- text_features = clip_model.encode_text(text)
134
-
135
- image_features /= image_features.norm(dim=-1, keepdim=True)
136
- text_features /= text_features.norm(dim=-1, keepdim=True)
137
- similarity = (100.0 * image_features @ text_features.T).softmax(dim=0).squeeze(0)
138
- _, max_pos = torch.max(similarity, dim=0)
139
- pos = max_pos.item()
140
-
141
- return pos
 
2
  import cv2
3
  import numpy as np
4
  from PIL import Image, ImageDraw, ImageFont
 
 
5
 
6
 
7
  def crop_image(img, position):
 
87
  return True
88
  else:
89
  return False