import gradio as gr from typing import Any import torch from transformers import pipeline from diffusers import StableDiffusionPipeline from TTS.api import TTS import utils from youtubeaudioextractor import PytubeAudioExtractor from transcriber import Transcriber from textprocessor import TextProcessor from videocreator import VideoCreator TRANSCRIBER_MODEL_NAME = "juancopi81/whisper-medium-es" lang = "es" device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if device == "cuda" else torch.float32 # Detect if code is running in Colab is_colab = utils.is_google_colab() colab_instruction = "" if is_colab else """
You can skip the queue using Colab:
""" device_print = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" # Initialize components audio_extractor = PytubeAudioExtractor() transcription_pipe = pipeline( task="automatic-speech-recognition", model=TRANSCRIBER_MODEL_NAME, chunk_length_s=30, device=device, ) transcription_pipe.model.config.forced_decoder_ids = transcription_pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") audio_transcriber = Transcriber(transcription_pipe) openai_model = "text-davinci-003" text_processor = TextProcessor(openai_model) image_model_id = "runwayml/stable-diffusion-v1-5" image_pipeline = StableDiffusionPipeline.from_pretrained(image_model_id, torch_dtype=dtype, revision="fp16") image_pipeline = image_pipeline.to(device) vo_model_name = TTS.list_models()[22] # Init TTS tts = TTS(vo_model_name) video_creator = VideoCreator(tts, image_pipeline) def datapipeline(url: str) -> Any: audio_path_file = audio_extractor.extract(url) print(f"Audio file created at: {audio_path_file}") transcribed_text = audio_transcriber.transcribe(audio_path_file) print("Audio transcription ready!") json_scenes = text_processor.get_json_scenes(transcribed_text) print("Scenes ready") video = video_creator.create_video(json_scenes) return video, video css = """ a { color: inherit; text-decoration: underline; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: #000000; background: #000000; } input[type='range'] { accent-color: #000000; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #generated_id{ min-height: 700px } """ block = gr.Blocks(css=css) with block as demo: gr.HTML( f"""Enter the URL of a YouTuve video (Spanish) and you'll recive a video with an illustraded summary. It works for audio books, history lessons, etc. Try it out with a short video (less than 10 minutes).
Running on {device_print}