jslin09 commited on
Commit
018d52d
·
verified ·
1 Parent(s): bb95725

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -25
app.py CHANGED
@@ -10,29 +10,29 @@ from transformers import pipeline
10
 
11
  pipe = pipeline("text-generation", model="jslin09/gemma2-2b-ner", device="cuda")
12
 
13
- elements = {'LEO_SOC': ('犯罪主體', 'Subject of Crime'),
14
- 'LEO_VIC': ('客體', 'Victim'),
15
- 'LEO_ACT': ('不法行為', 'Behavior'),
16
- 'LEO_SLE': ('主觀要件', 'Subjective Legal Element of the Offense'),
17
- 'LEO_CAU': ('因果關係', 'Causation'),
18
- 'LEO_ROH': ('危害結果', 'Result of Hazard'),
19
- 'LEO_ATP': ('未遂', 'Attempted'),
20
- 'LEO_ACC': ('既遂', 'Accomplished'),
21
- 'LEO_ABA': ('中止', 'Abandonment'),
22
- 'LEO_PRP': ('預備', 'Preparation'),
23
- 'ILG_GLJ': ('阻卻違法事由', 'Ground of Legal Justification'),
24
- 'ILG_SDE': ('正當防衛', 'Self-Defense'),
25
- 'ILG_NEC': ('緊急避難', 'Emergency Avoidance'),
26
- 'CUL_INS': ('心神喪失', 'Insane'),
27
- 'CUL_FBD': ('精神耗弱', 'Feebleminded'),
28
- 'CUL_ALC': ('原因自由行為', 'Actio Libera in Causa'),
29
- 'CUL_RPS': ('責任能力', 'Responsibility'),
30
- 'CUL_ANP': ('期待可能性', 'Anticipated Possibility'),
31
- 'CUL_GUM': ('犯罪意識', 'Guilty Mind')
32
- }
33
 
34
- secret = os.environ.get("HF_TOKEN")
35
- llm_server = os.environ.get("REMOTE_LLM_SERVER")
36
  legal_element_tags = ['LEO_SOC', 'LEO_VIC', 'LEO_ACT', 'LEO_SLE', 'LEO_CAU', 'LEO_ROH']
37
 
38
  def get_prompt(content, tag, tag_name):
@@ -135,9 +135,6 @@ def ner_extract(text, le_list):
135
  ner_list.append(ner_dict)
136
  index = index + 1
137
  return ner_list
138
- @spaces.GPU
139
- def dummy():
140
- return None
141
 
142
  @spaces.GPU(duration=180)
143
  def le_ner(content, legal_element_tags=legal_element_tags):
 
10
 
11
  pipe = pipeline("text-generation", model="jslin09/gemma2-2b-ner", device="cuda")
12
 
13
+ all_elements = {'LEO_SOC': ('犯罪主體', 'Subject of Crime'),
14
+ 'LEO_VIC': ('客體', 'Victim'),
15
+ 'LEO_ACT': ('不法行為', 'Behavior'),
16
+ 'LEO_SLE': ('主觀要件', 'Subjective Legal Element of the Offense'),
17
+ 'LEO_CAU': ('因果關係', 'Causation'),
18
+ 'LEO_ROH': ('危害結果', 'Result of Hazard'),
19
+ 'LEO_ATP': ('未遂', 'Attempted'),
20
+ 'LEO_ACC': ('既遂', 'Accomplished'),
21
+ 'LEO_ABA': ('中止', 'Abandonment'),
22
+ 'LEO_PRP': ('預備', 'Preparation'),
23
+ 'ILG_GLJ': ('阻卻違法事由', 'Ground of Legal Justification'),
24
+ 'ILG_SDE': ('正當防衛', 'Self-Defense'),
25
+ 'ILG_NEC': ('緊急避難', 'Emergency Avoidance'),
26
+ 'CUL_INS': ('心神喪失', 'Insane'),
27
+ 'CUL_FBD': ('精神耗弱', 'Feebleminded'),
28
+ 'CUL_ALC': ('原因自由行為', 'Actio Libera in Causa'),
29
+ 'CUL_RPS': ('責任能力', 'Responsibility'),
30
+ 'CUL_ANP': ('期待可能性', 'Anticipated Possibility'),
31
+ 'CUL_GUM': ('犯罪意識', 'Guilty Mind')
32
+ }
33
 
34
+ #secret = os.environ.get("HF_TOKEN")
35
+ #llm_server = os.environ.get("REMOTE_LLM_SERVER")
36
  legal_element_tags = ['LEO_SOC', 'LEO_VIC', 'LEO_ACT', 'LEO_SLE', 'LEO_CAU', 'LEO_ROH']
37
 
38
  def get_prompt(content, tag, tag_name):
 
135
  ner_list.append(ner_dict)
136
  index = index + 1
137
  return ner_list
 
 
 
138
 
139
  @spaces.GPU(duration=180)
140
  def le_ner(content, legal_element_tags=legal_element_tags):