import gradio as gr import os import time import tempfile import requests from PIL import Image from io import BytesIO import markdown import re import json import random from transformers import pipeline from huggingface_hub import HfApi from linkedin_api import Linkedin # Initialize models try: text_generation = pipeline( "text-generation", model="mistralai/Mistral-7B-Instruct-v0.2", max_length=4096, temperature=0.7 ) image_generation = pipeline("text-to-image", model="runwayml/stable-diffusion-v1-5") except Exception as e: print(f"Error loading models: {e}") # Fallback to smaller models if needed try: text_generation = pipeline( "text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", max_length=2048 ) image_generation = None except: text_generation = None image_generation = None # Function to generate blog content def generate_blog_content(topic, tone="professional", length="medium"): if not text_generation: return "Error: Text generation model could not be loaded." length_words = { "short": "500-800", "medium": "1000-1500", "long": "2000-2500" }[length] tone_instructions = { "professional": "Use a formal, business-like tone with industry terminology.", "casual": "Write in a conversational, friendly tone as if talking to a peer.", "technical": "Include detailed technical information and analysis.", "storytelling": "Structure the content as a narrative with examples and stories." }[tone] prompt = f""" Write a complete blog post about {topic}. {tone_instructions} The blog post should be approximately {length_words} words and include: - An attention-grabbing headline - An engaging introduction - 3-5 well-structured sections with subheadings - Practical insights and takeaways - A conclusion Format the blog in markdown with proper headings, bullet points, and emphasis. """ try: result = text_generation(prompt, max_length=4096)[0]['generated_text'] # Clean up the output - extract just the blog post blog_content = result.split(prompt)[-1].strip() return blog_content except Exception as e: return f"Error generating blog content: {str(e)}" # Function to generate image def generate_featured_image(topic): if not image_generation: return None, "Image generation not available. Using default image." prompt = f"Professional illustration for blog about {topic}, digital art, high quality" try: image = image_generation(prompt) if isinstance(image, list): image = image[0] if image else None temp_img_path = f"temp_image_{random.randint(1000, 9999)}.png" if hasattr(image, 'save'): image.save(temp_img_path) else: # Handle different return types if isinstance(image, dict) and 'images' in image: image = Image.fromarray(image['images'][0]) image.save(temp_img_path) return temp_img_path, "Image generated successfully" except Exception as e: return None, f"Error generating image: {str(e)}" # Function to post to LinkedIn def post_to_linkedin(content, image_path=None, linkedin_username=None, linkedin_password=None): if not linkedin_username or not linkedin_password: return "Error: LinkedIn credentials are required." try: # Extract title from markdown title_match = re.search(r'^#\s+(.+)$', content, re.MULTILINE) title = title_match.group(1) if title_match else "New Blog Post" # Convert markdown to plain text for LinkedIn # Remove markdown formatting for LinkedIn post plain_content = content plain_content = re.sub(r'^#+\s+', '', plain_content, flags=re.MULTILINE) # Remove headings plain_content = re.sub(r'\*\*(.*?)\*\*', r'\1', plain_content) # Remove bold plain_content = re.sub(r'\*(.*?)\*', r'\1', plain_content) # Remove italic # Shorten for LinkedIn if len(plain_content) > 1300: # LinkedIn character limit plain_content = plain_content[:1297] + "..." # Add a title and link to full blog if available post_text = f"{title}\n\n{plain_content}" # Initialize LinkedIn API api = Linkedin(linkedin_username, linkedin_password) # Post to LinkedIn if image_path and os.path.exists(image_path): # Upload image first media_id = api.upload_image(image_path) # Post with image post_response = api.create_post(post_text, media_ids=[media_id]) else: # Text-only post post_response = api.create_post(post_text) # Clean up temporary image file if image_path and os.path.exists(image_path): try: os.remove(image_path) except: pass return f"Successfully posted to LinkedIn: {title}" except Exception as e: return f"Error posting to LinkedIn: {str(e)}" # Function to save as Hugging Face Space def save_as_blog(content, title, author, image_path=None, hf_token=None): if not hf_token: return "Error: Hugging Face token is required to save blog." try: # Process content html_content = markdown.markdown(content) # Create a simple HTML template blog_html = f""" {title}

{title}

By {author}
{f'{title}' if image_path else ''}
{html_content}
""" # Create a safe repo name repo_name = f"blog-{re.sub(r'[^a-z0-9-]', '-', title.lower())}" # Initialize the Hugging Face API hf_api = HfApi(token=hf_token) # Create the Space if it doesn't exist try: hf_api.create_repo( repo_id=f"spaces/{repo_name}", repo_type="space", space_sdk="static" ) except Exception as e: print(f"Space might already exist: {e}") # Upload the HTML file hf_api.upload_file( path_or_fileobj=blog_html.encode(), path_in_repo="index.html", repo_id=f"spaces/{repo_name}", repo_type="space" ) # Upload image if available if image_path and os.path.exists(image_path): hf_api.upload_file( path_or_fileobj=image_path, path_in_repo="featured_image.png", repo_id=f"spaces/{repo_name}", repo_type="space" ) return f"Blog published successfully: https://huggingface.co/spaces/{repo_name}" except Exception as e: return f"Error saving blog: {str(e)}" # Main app function def generate_blog(topic, tone, length, author_name, publish_option, linkedin_username=None, linkedin_password=None, hf_token=None): status_updates = [] status_updates.append(f"Generating blog content for topic: {topic}") # Generate the blog content start_time = time.time() blog_content = generate_blog_content(topic, tone, length) generation_time = time.time() - start_time status_updates.append(f"Content generated in {generation_time:.2f} seconds") # Extract title from content title_match = re.search(r'^#\s+(.+)$', blog_content, re.MULTILINE) title = title_match.group(1) if title_match else topic # Generate image status_updates.append("Generating featured image...") image_path, image_message = generate_featured_image(topic) status_updates.append(image_message) # Handle publishing if publish_option == "linkedin" and linkedin_username and linkedin_password: status_updates.append("Posting to LinkedIn...") linkedin_result = post_to_linkedin(blog_content, image_path, linkedin_username, linkedin_password) status_updates.append(linkedin_result) if publish_option in ["huggingface", "both"] and hf_token: status_updates.append("Saving as Hugging Face blog...") hf_result = save_as_blog(blog_content, title, author_name, image_path, hf_token) status_updates.append(hf_result) # Clean up if image_path and os.path.exists(image_path): try: os.remove(image_path) except: pass return blog_content, title, "\n".join(status_updates) # Gradio interface with gr.Blocks(title="Blog Generator & Publisher") as app: gr.Markdown("# AI Blog Generator & LinkedIn Publisher") gr.Markdown("Generate professional blog content and publish directly to LinkedIn or save to Hugging Face Spaces.") with gr.Tab("Generate Blog"): with gr.Row(): with gr.Column(): topic_input = gr.Textbox(label="Blog Topic", placeholder="Enter the topic of your blog post") tone_input = gr.Dropdown( label="Writing Tone", choices=["professional", "casual", "technical", "storytelling"], value="professional" ) length_input = gr.Dropdown( label="Content Length", choices=["short", "medium", "long"], value="medium" ) author_input = gr.Textbox(label="Author Name", placeholder="Your name") with gr.Accordion("Publishing Options", open=False): publish_option = gr.Radio( label="Publish To", choices=["none", "linkedin", "huggingface", "both"], value="none" ) with gr.Group(): linkedin_username = gr.Textbox(label="LinkedIn Username", visible=False) linkedin_password = gr.Textbox(label="LinkedIn Password", type="password", visible=False) hf_token = gr.Textbox(label="Hugging Face Token", type="password", visible=False) def update_visibility(option): linkedin_visible = option in ["linkedin", "both"] hf_visible = option in ["huggingface", "both"] return { linkedin_username: gr.update(visible=linkedin_visible), linkedin_password: gr.update(visible=linkedin_visible), hf_token: gr.update(visible=hf_visible) } publish_option.change(update_visibility, inputs=[publish_option], outputs=[linkedin_username, linkedin_password, hf_token]) generate_btn = gr.Button("Generate Blog", variant="primary") with gr.Column(): title_output = gr.Textbox(label="Blog Title") blog_output = gr.Markdown(label="Blog Content") status_output = gr.Textbox(label="Status", lines=5) generate_btn.click( generate_blog, inputs=[topic_input, tone_input, length_input, author_input, publish_option, linkedin_username, linkedin_password, hf_token], outputs=[blog_output, title_output, status_output] ) with gr.Tab("About"): gr.Markdown(""" ## About This Tool This application uses AI to generate professional blog content that you can publish directly to LinkedIn or save as a Hugging Face Space. ### Features: - Generate blog posts on any topic - Choose from different writing tones and length options - Create featured images automatically - Publish directly to LinkedIn - Save as a Hugging Face Space blog ### How to Use: 1. Enter your blog topic 2. Select your preferred tone and length 3. Enter your author name 4. Choose publishing options (if desired) 5. Click "Generate Blog" ### Credits: This app was created using: - Hugging Face's Transformers library - Mistral and Stable Diffusion models - Gradio for the interface """) if __name__ == "__main__": app.launch()