# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Signal-to-Reconstruction Error (SRE) metric.""" import evaluate import datasets import numpy as np _DESCRIPTION = """\ Compute the Signal-to-Reconstruction Error (SRE) metric. This metric is commonly used to asses the performance of denoising, super-resolution and style transfer algorithms in audio and image processing. """ _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `np.array`): Predicted labels. references (`list` of `np.array`): Ground truth labels. sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: sre (`float`): Signal-to-Reconstruction Error (SRE) metric. The SRE values are positive and they are expressed in decibels (dB). The higher the SRE value, the better. Examples: Example 1-A simple example >>> sre = evaluate.load("jpxkqx/signal_to_reconstruction_error") >>> results = sre.compute(references=[[0, 0], [-1, -1]], predictions=[[0, 1], [0, 0]]) >>> print(results) {"Signal-to-Reconstruction Error": 23.01} """ def signal_reconstruction_error(y_true: np.array, y_hat: np.array) -> np.array: return 10 * np.log10(np.sum(y_true ** 2) / np.sum((y_true - y_hat) ** 2)) @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class SignaltoReconstrutionError(evaluate.Metric): def _info(self): return evaluate.MetricInfo( module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types()), homepage="https://huggingface.co/spaces/jpxkqx/signal_to_reconstrution_error", ) def _get_feature_types(self): if self.config_name == "multilist": return { # 1st Seq - num_samples, 2nd Seq - Height, 3rd Seq - Width "predictions": datasets.Sequence( datasets.Sequence(datasets.Sequence(datasets.Value("float32"))) ), "references": datasets.Sequence( datasets.Sequence(datasets.Sequence(datasets.Value("float32"))) ), } else: return { # 1st Seq - Height, 2rd Seq - Width "predictions": datasets.Sequence( datasets.Sequence(datasets.Value("float32")) ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("float32")) ), } def _compute(self, predictions, references, sample_weight=None): """Returns the scores""" samples = zip(np.array(references), np.array(predictions)) psnrs = list(map(lambda args: signal_reconstruction_error(*args), samples)) return { "Signal-to-Reconstruction Error": np.average(psnrs, weights=sample_weight) }