File size: 6,199 Bytes
f784bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Tratamiento de datos
# ==============================================================================
import re
import numpy as np
import pandas as pd
from astral.sun import sun
from astral import LocationInfo
from skforecast.datasets import fetch_dataset
from feature_engine.datetime import DatetimeFeatures
from feature_engine.creation import CyclicalFeatures
from feature_engine.timeseries.forecasting import WindowFeatures
from sklearn.preprocessing import PolynomialFeatures
import sys
import os
##########################################################################################


# current_dir = os.getcwd()
# ROOT_PATH = os.path.dirname(current_dir)
# sys.path.insert(1, ROOT_PATH)
# import root
# datos = pd.read_pickle(root.DIR_DATA_STAGE + 'train.pkl')

# Variables basadas en el calendario
def calendar_features(datos):
    features_to_extract = [
    'month',
    'week',
    'day_of_week',
    'hour'
    ]   
    calendar_transformer = DatetimeFeatures(
        variables='index',
        features_to_extract=features_to_extract,
        drop_original=True,
    )
    variables_calendario = calendar_transformer.fit_transform(datos)[features_to_extract]
    
    return variables_calendario

# Variables basadas en la luz solar
def solar_features(datos):
    location = LocationInfo(
        name      = 'Taillin',
        region    = 'Estonia',
        timezone  = 'Europe/Riga',
        latitude  = 56.946285,
        longitude = 24.105078
    )
    sunrise_hour = [
        sun(location.observer, date=date, tzinfo=location.timezone)['sunrise']
        for date in datos.index
    ]
    sunset_hour = [
        sun(location.observer, date=date, tzinfo=location.timezone)['sunset']
        for date in datos.index
    ]
    sunrise_hour = pd.Series(sunrise_hour, index=datos.index).dt.round("h").dt.hour
    sunset_hour = pd.Series(sunset_hour, index=datos.index).dt.round("h").dt.hour
    variables_solares = pd.DataFrame({
                            'sunrise_hour': sunrise_hour,
                            'sunset_hour': sunset_hour
                        })
    variables_solares['daylight_hours'] = (
        variables_solares['sunset_hour'] - variables_solares['sunrise_hour']
    )
    variables_solares["is_daylight"] = np.where(
        (datos.index.hour >= variables_solares["sunrise_hour"])
        & (datos.index.hour < variables_solares["sunset_hour"]),
        1,
        0,
    )
    
    return variables_solares

# Uni贸n de variables ex贸genas

def union_exog_features(variables_calendario, variables_solares):
    assert all(variables_calendario.index == variables_solares.index)
    variables_exogenas = pd.concat([
                            variables_calendario,
                            variables_solares
                        ], axis=1)
    
    return variables_exogenas

def ciclic_features(variables_exogenas):
    features_to_encode = [
        "month",
        "week",
        "day_of_week",
        "hour",
        "sunrise_hour",
        "sunset_hour",
    ]
    max_values = {
        "month": 12,
        "week": 52,
        "day_of_week": 6,
        "hour": 23,
        "sunrise_hour": 23,
        "sunset_hour": 23,
    }
    cyclical_encoder = CyclicalFeatures(
        variables     = features_to_encode,
        max_values    = max_values,
        drop_original = False
    )

    variables_exogenas = cyclical_encoder.fit_transform(variables_exogenas)   

    return variables_exogenas

def pol_features(variables_exogenas):
# Interacci贸n entre variables ex贸genas
    transformer_poly = PolynomialFeatures(
                            degree           = 2,
                            interaction_only = True,
                            include_bias     = False
                        ).set_output(transform="pandas")
    poly_cols = [
        'month_sin', 
        'month_cos',
        'week_sin',
        'week_cos',
        'day_of_week_sin',
        'day_of_week_cos',
        'hour_sin',
        'hour_cos',
        'sunrise_hour_sin',
        'sunrise_hour_cos',
        'sunset_hour_sin',
        'sunset_hour_cos',
        'daylight_hours',
        'is_daylight',
    ]
    variables_poly = transformer_poly.fit_transform(variables_exogenas[poly_cols])
    variables_poly = variables_poly.drop(columns=poly_cols)
    variables_poly.columns = [f"poly_{col}" for col in variables_poly.columns]
    variables_poly.columns = variables_poly.columns.str.replace(" ", "__")
    assert all(variables_exogenas.index == variables_poly.index)
    variables_exogenas = pd.concat([variables_exogenas, variables_poly], axis=1)   
 
    return variables_exogenas  


def select_exog_features(variables_exogenas):
    # Selecci贸n de variables ex贸genas incluidas en el modelo
    exog_features = []
    # Columnas que terminan con _seno o _coseno son seleccionadas
    exog_features.extend(variables_exogenas.filter(regex='_sin$|_cos$').columns.tolist())
    
    return exog_features
     
def merge_df(datos,variables_exogenas, exog_features):
    datos = datos.merge(variables_exogenas[exog_features],
           left_index=True,
           right_index=True,
           how='left'  # Usar solo las filas que coinciden en ambos DataFrames
       )
    
    return datos
    

def create_exog(datos):
    # Read datasets
    
    ################### Train ######################
    # Prepare date columns
    variables_calendario = calendar_features(datos)
    
    #solar features
    variables_solares = solar_features(datos)
    
    # mergin variables
    variables_exogenas = union_exog_features(variables_calendario, variables_solares)
    
    # cyclical features
    variables_exogenas = ciclic_features(variables_exogenas)
    
    # polynomial features
    variables_exogenas = pol_features(variables_exogenas)
    
    # Select exog features
    exog_features = select_exog_features(variables_exogenas)
    
    # Merge datasets
    datos = merge_df(datos,variables_exogenas, exog_features)
    
    return datos