from ._base import EncoderMixin from timm.models.resnet import ResNet from timm.models.res2net import Bottle2neck import torch.nn as nn class Res2NetEncoder(ResNet, EncoderMixin): def __init__(self, out_channels, depth=5, **kwargs): super().__init__(**kwargs) self._depth = depth self._out_channels = out_channels self._in_channels = 3 del self.fc del self.global_pool def get_stages(self): return [ nn.Identity(), nn.Sequential(self.conv1, self.bn1, self.act1), nn.Sequential(self.maxpool, self.layer1), self.layer2, self.layer3, self.layer4, ] def make_dilated(self, stage_list, dilation_list): raise ValueError("Res2Net encoders do not support dilated mode") def forward(self, x): stages = self.get_stages() features = [] for i in range(self._depth + 1): x = stages[i](x) features.append(x) return features def load_state_dict(self, state_dict, **kwargs): state_dict.pop("fc.bias", None) state_dict.pop("fc.weight", None) super().load_state_dict(state_dict, **kwargs) res2net_weights = { 'timm-res2net50_26w_4s': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth' }, 'timm-res2net50_48w_2s': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth' }, 'timm-res2net50_14w_8s': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth', }, 'timm-res2net50_26w_6s': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth', }, 'timm-res2net50_26w_8s': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth', }, 'timm-res2net101_26w_4s': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth', }, 'timm-res2next50': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth', } } pretrained_settings = {} for model_name, sources in res2net_weights.items(): pretrained_settings[model_name] = {} for source_name, source_url in sources.items(): pretrained_settings[model_name][source_name] = { "url": source_url, 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } timm_res2net_encoders = { 'timm-res2net50_26w_4s': { 'encoder': Res2NetEncoder, "pretrained_settings": pretrained_settings["timm-res2net50_26w_4s"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': Bottle2neck, 'layers': [3, 4, 6, 3], 'base_width': 26, 'block_args': {'scale': 4} }, }, 'timm-res2net101_26w_4s': { 'encoder': Res2NetEncoder, "pretrained_settings": pretrained_settings["timm-res2net101_26w_4s"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': Bottle2neck, 'layers': [3, 4, 23, 3], 'base_width': 26, 'block_args': {'scale': 4} }, }, 'timm-res2net50_26w_6s': { 'encoder': Res2NetEncoder, "pretrained_settings": pretrained_settings["timm-res2net50_26w_6s"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': Bottle2neck, 'layers': [3, 4, 6, 3], 'base_width': 26, 'block_args': {'scale': 6} }, }, 'timm-res2net50_26w_8s': { 'encoder': Res2NetEncoder, "pretrained_settings": pretrained_settings["timm-res2net50_26w_8s"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': Bottle2neck, 'layers': [3, 4, 6, 3], 'base_width': 26, 'block_args': {'scale': 8} }, }, 'timm-res2net50_48w_2s': { 'encoder': Res2NetEncoder, "pretrained_settings": pretrained_settings["timm-res2net50_48w_2s"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': Bottle2neck, 'layers': [3, 4, 6, 3], 'base_width': 48, 'block_args': {'scale': 2} }, }, 'timm-res2net50_14w_8s': { 'encoder': Res2NetEncoder, "pretrained_settings": pretrained_settings["timm-res2net50_14w_8s"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': Bottle2neck, 'layers': [3, 4, 6, 3], 'base_width': 14, 'block_args': {'scale': 8} }, }, 'timm-res2next50': { 'encoder': Res2NetEncoder, "pretrained_settings": pretrained_settings["timm-res2next50"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': Bottle2neck, 'layers': [3, 4, 6, 3], 'base_width': 4, 'cardinality': 8, 'block_args': {'scale': 4} }, } }