josedolot commited on
Commit
c731cd7
·
1 Parent(s): 1590106

Upload encoders/densenet.py

Browse files
Files changed (1) hide show
  1. encoders/densenet.py +146 -0
encoders/densenet.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin`
2
+
3
+ Attributes:
4
+
5
+ _out_channels (list of int): specify number of channels for each encoder feature tensor
6
+ _depth (int): specify number of stages in decoder (in other words number of downsampling operations)
7
+ _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3)
8
+
9
+ Methods:
10
+
11
+ forward(self, x: torch.Tensor)
12
+ produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of
13
+ shape NCHW (features should be sorted in descending order according to spatial resolution, starting
14
+ with resolution same as input `x` tensor).
15
+
16
+ Input: `x` with shape (1, 3, 64, 64)
17
+ Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes
18
+ [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8),
19
+ (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ)
20
+
21
+ also should support number of features according to specified depth, e.g. if depth = 5,
22
+ number of feature tensors = 6 (one with same resolution as input and 5 downsampled),
23
+ depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled).
24
+ """
25
+
26
+ import re
27
+ import torch.nn as nn
28
+
29
+ from pretrainedmodels.models.torchvision_models import pretrained_settings
30
+ from torchvision.models.densenet import DenseNet
31
+
32
+ from ._base import EncoderMixin
33
+
34
+
35
+ class TransitionWithSkip(nn.Module):
36
+
37
+ def __init__(self, module):
38
+ super().__init__()
39
+ self.module = module
40
+
41
+ def forward(self, x):
42
+ for module in self.module:
43
+ x = module(x)
44
+ if isinstance(module, nn.ReLU):
45
+ skip = x
46
+ return x, skip
47
+
48
+
49
+ class DenseNetEncoder(DenseNet, EncoderMixin):
50
+ def __init__(self, out_channels, depth=5, **kwargs):
51
+ super().__init__(**kwargs)
52
+ self._out_channels = out_channels
53
+ self._depth = depth
54
+ self._in_channels = 3
55
+ del self.classifier
56
+
57
+ def make_dilated(self, stage_list, dilation_list):
58
+ raise ValueError("DenseNet encoders do not support dilated mode "
59
+ "due to pooling operation for downsampling!")
60
+
61
+ def get_stages(self):
62
+ return [
63
+ nn.Identity(),
64
+ nn.Sequential(self.features.conv0, self.features.norm0, self.features.relu0),
65
+ nn.Sequential(self.features.pool0, self.features.denseblock1,
66
+ TransitionWithSkip(self.features.transition1)),
67
+ nn.Sequential(self.features.denseblock2, TransitionWithSkip(self.features.transition2)),
68
+ nn.Sequential(self.features.denseblock3, TransitionWithSkip(self.features.transition3)),
69
+ nn.Sequential(self.features.denseblock4, self.features.norm5)
70
+ ]
71
+
72
+ def forward(self, x):
73
+
74
+ stages = self.get_stages()
75
+
76
+ features = []
77
+ for i in range(self._depth + 1):
78
+ x = stages[i](x)
79
+ if isinstance(x, (list, tuple)):
80
+ x, skip = x
81
+ features.append(skip)
82
+ else:
83
+ features.append(x)
84
+
85
+ return features
86
+
87
+ def load_state_dict(self, state_dict):
88
+ pattern = re.compile(
89
+ r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$"
90
+ )
91
+ for key in list(state_dict.keys()):
92
+ res = pattern.match(key)
93
+ if res:
94
+ new_key = res.group(1) + res.group(2)
95
+ state_dict[new_key] = state_dict[key]
96
+ del state_dict[key]
97
+
98
+ # remove linear
99
+ state_dict.pop("classifier.bias", None)
100
+ state_dict.pop("classifier.weight", None)
101
+
102
+ super().load_state_dict(state_dict)
103
+
104
+
105
+ densenet_encoders = {
106
+ "densenet121": {
107
+ "encoder": DenseNetEncoder,
108
+ "pretrained_settings": pretrained_settings["densenet121"],
109
+ "params": {
110
+ "out_channels": (3, 64, 256, 512, 1024, 1024),
111
+ "num_init_features": 64,
112
+ "growth_rate": 32,
113
+ "block_config": (6, 12, 24, 16),
114
+ },
115
+ },
116
+ "densenet169": {
117
+ "encoder": DenseNetEncoder,
118
+ "pretrained_settings": pretrained_settings["densenet169"],
119
+ "params": {
120
+ "out_channels": (3, 64, 256, 512, 1280, 1664),
121
+ "num_init_features": 64,
122
+ "growth_rate": 32,
123
+ "block_config": (6, 12, 32, 32),
124
+ },
125
+ },
126
+ "densenet201": {
127
+ "encoder": DenseNetEncoder,
128
+ "pretrained_settings": pretrained_settings["densenet201"],
129
+ "params": {
130
+ "out_channels": (3, 64, 256, 512, 1792, 1920),
131
+ "num_init_features": 64,
132
+ "growth_rate": 32,
133
+ "block_config": (6, 12, 48, 32),
134
+ },
135
+ },
136
+ "densenet161": {
137
+ "encoder": DenseNetEncoder,
138
+ "pretrained_settings": pretrained_settings["densenet161"],
139
+ "params": {
140
+ "out_channels": (3, 96, 384, 768, 2112, 2208),
141
+ "num_init_features": 96,
142
+ "growth_rate": 48,
143
+ "block_config": (6, 12, 36, 24),
144
+ },
145
+ },
146
+ }