josedolot commited on
Commit
34d220d
·
1 Parent(s): 5bf5f42

Upload encoders/resnet.py

Browse files
Files changed (1) hide show
  1. encoders/resnet.py +238 -0
encoders/resnet.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin`
2
+
3
+ Attributes:
4
+
5
+ _out_channels (list of int): specify number of channels for each encoder feature tensor
6
+ _depth (int): specify number of stages in decoder (in other words number of downsampling operations)
7
+ _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3)
8
+
9
+ Methods:
10
+
11
+ forward(self, x: torch.Tensor)
12
+ produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of
13
+ shape NCHW (features should be sorted in descending order according to spatial resolution, starting
14
+ with resolution same as input `x` tensor).
15
+
16
+ Input: `x` with shape (1, 3, 64, 64)
17
+ Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes
18
+ [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8),
19
+ (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ)
20
+
21
+ also should support number of features according to specified depth, e.g. if depth = 5,
22
+ number of feature tensors = 6 (one with same resolution as input and 5 downsampled),
23
+ depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled).
24
+ """
25
+ from copy import deepcopy
26
+
27
+ import torch.nn as nn
28
+
29
+ from torchvision.models.resnet import ResNet
30
+ from torchvision.models.resnet import BasicBlock
31
+ from torchvision.models.resnet import Bottleneck
32
+ from pretrainedmodels.models.torchvision_models import pretrained_settings
33
+
34
+ from ._base import EncoderMixin
35
+
36
+
37
+ class ResNetEncoder(ResNet, EncoderMixin):
38
+ def __init__(self, out_channels, depth=5, **kwargs):
39
+ super().__init__(**kwargs)
40
+ self._depth = depth
41
+ self._out_channels = out_channels
42
+ self._in_channels = 3
43
+
44
+ del self.fc
45
+ del self.avgpool
46
+
47
+ def get_stages(self):
48
+ return [
49
+ nn.Identity(),
50
+ nn.Sequential(self.conv1, self.bn1, self.relu),
51
+ nn.Sequential(self.maxpool, self.layer1),
52
+ self.layer2,
53
+ self.layer3,
54
+ self.layer4,
55
+ ]
56
+
57
+ def forward(self, x):
58
+ stages = self.get_stages()
59
+
60
+ features = []
61
+ for i in range(self._depth + 1):
62
+ x = stages[i](x)
63
+ features.append(x)
64
+
65
+ return features
66
+
67
+ def load_state_dict(self, state_dict, **kwargs):
68
+ state_dict.pop("fc.bias", None)
69
+ state_dict.pop("fc.weight", None)
70
+ super().load_state_dict(state_dict, **kwargs)
71
+
72
+
73
+ new_settings = {
74
+ "resnet18": {
75
+ "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth",
76
+ "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth"
77
+ },
78
+ "resnet50": {
79
+ "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth",
80
+ "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth"
81
+ },
82
+ "resnext50_32x4d": {
83
+ "imagenet": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
84
+ "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth",
85
+ "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth",
86
+ },
87
+ "resnext101_32x4d": {
88
+ "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth",
89
+ "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth"
90
+ },
91
+ "resnext101_32x8d": {
92
+ "imagenet": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
93
+ "instagram": "https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth",
94
+ "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth",
95
+ "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth",
96
+ },
97
+ "resnext101_32x16d": {
98
+ "instagram": "https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth",
99
+ "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth",
100
+ "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth",
101
+ },
102
+ "resnext101_32x32d": {
103
+ "instagram": "https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth",
104
+ },
105
+ "resnext101_32x48d": {
106
+ "instagram": "https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth",
107
+ }
108
+ }
109
+
110
+ pretrained_settings = deepcopy(pretrained_settings)
111
+ for model_name, sources in new_settings.items():
112
+ if model_name not in pretrained_settings:
113
+ pretrained_settings[model_name] = {}
114
+
115
+ for source_name, source_url in sources.items():
116
+ pretrained_settings[model_name][source_name] = {
117
+ "url": source_url,
118
+ 'input_size': [3, 224, 224],
119
+ 'input_range': [0, 1],
120
+ 'mean': [0.485, 0.456, 0.406],
121
+ 'std': [0.229, 0.224, 0.225],
122
+ 'num_classes': 1000
123
+ }
124
+
125
+
126
+ resnet_encoders = {
127
+ "resnet18": {
128
+ "encoder": ResNetEncoder,
129
+ "pretrained_settings": pretrained_settings["resnet18"],
130
+ "params": {
131
+ "out_channels": (3, 64, 64, 128, 256, 512),
132
+ "block": BasicBlock,
133
+ "layers": [2, 2, 2, 2],
134
+ },
135
+ },
136
+ "resnet34": {
137
+ "encoder": ResNetEncoder,
138
+ "pretrained_settings": pretrained_settings["resnet34"],
139
+ "params": {
140
+ "out_channels": (3, 64, 64, 128, 256, 512),
141
+ "block": BasicBlock,
142
+ "layers": [3, 4, 6, 3],
143
+ },
144
+ },
145
+ "resnet50": {
146
+ "encoder": ResNetEncoder,
147
+ "pretrained_settings": pretrained_settings["resnet50"],
148
+ "params": {
149
+ "out_channels": (3, 64, 256, 512, 1024, 2048),
150
+ "block": Bottleneck,
151
+ "layers": [3, 4, 6, 3],
152
+ },
153
+ },
154
+ "resnet101": {
155
+ "encoder": ResNetEncoder,
156
+ "pretrained_settings": pretrained_settings["resnet101"],
157
+ "params": {
158
+ "out_channels": (3, 64, 256, 512, 1024, 2048),
159
+ "block": Bottleneck,
160
+ "layers": [3, 4, 23, 3],
161
+ },
162
+ },
163
+ "resnet152": {
164
+ "encoder": ResNetEncoder,
165
+ "pretrained_settings": pretrained_settings["resnet152"],
166
+ "params": {
167
+ "out_channels": (3, 64, 256, 512, 1024, 2048),
168
+ "block": Bottleneck,
169
+ "layers": [3, 8, 36, 3],
170
+ },
171
+ },
172
+ "resnext50_32x4d": {
173
+ "encoder": ResNetEncoder,
174
+ "pretrained_settings": pretrained_settings["resnext50_32x4d"],
175
+ "params": {
176
+ "out_channels": (3, 64, 256, 512, 1024, 2048),
177
+ "block": Bottleneck,
178
+ "layers": [3, 4, 6, 3],
179
+ "groups": 32,
180
+ "width_per_group": 4,
181
+ },
182
+ },
183
+ "resnext101_32x4d": {
184
+ "encoder": ResNetEncoder,
185
+ "pretrained_settings": pretrained_settings["resnext101_32x4d"],
186
+ "params": {
187
+ "out_channels": (3, 64, 256, 512, 1024, 2048),
188
+ "block": Bottleneck,
189
+ "layers": [3, 4, 23, 3],
190
+ "groups": 32,
191
+ "width_per_group": 4,
192
+ },
193
+ },
194
+ "resnext101_32x8d": {
195
+ "encoder": ResNetEncoder,
196
+ "pretrained_settings": pretrained_settings["resnext101_32x8d"],
197
+ "params": {
198
+ "out_channels": (3, 64, 256, 512, 1024, 2048),
199
+ "block": Bottleneck,
200
+ "layers": [3, 4, 23, 3],
201
+ "groups": 32,
202
+ "width_per_group": 8,
203
+ },
204
+ },
205
+ "resnext101_32x16d": {
206
+ "encoder": ResNetEncoder,
207
+ "pretrained_settings": pretrained_settings["resnext101_32x16d"],
208
+ "params": {
209
+ "out_channels": (3, 64, 256, 512, 1024, 2048),
210
+ "block": Bottleneck,
211
+ "layers": [3, 4, 23, 3],
212
+ "groups": 32,
213
+ "width_per_group": 16,
214
+ },
215
+ },
216
+ "resnext101_32x32d": {
217
+ "encoder": ResNetEncoder,
218
+ "pretrained_settings": pretrained_settings["resnext101_32x32d"],
219
+ "params": {
220
+ "out_channels": (3, 64, 256, 512, 1024, 2048),
221
+ "block": Bottleneck,
222
+ "layers": [3, 4, 23, 3],
223
+ "groups": 32,
224
+ "width_per_group": 32,
225
+ },
226
+ },
227
+ "resnext101_32x48d": {
228
+ "encoder": ResNetEncoder,
229
+ "pretrained_settings": pretrained_settings["resnext101_32x48d"],
230
+ "params": {
231
+ "out_channels": (3, 64, 256, 512, 1024, 2048),
232
+ "block": Bottleneck,
233
+ "layers": [3, 4, 23, 3],
234
+ "groups": 32,
235
+ "width_per_group": 48,
236
+ },
237
+ },
238
+ }