Spaces:
Runtime error
Runtime error
Upload encoders/efficientnet.py
Browse files- encoders/efficientnet.py +178 -0
encoders/efficientnet.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin`
|
2 |
+
|
3 |
+
Attributes:
|
4 |
+
|
5 |
+
_out_channels (list of int): specify number of channels for each encoder feature tensor
|
6 |
+
_depth (int): specify number of stages in decoder (in other words number of downsampling operations)
|
7 |
+
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3)
|
8 |
+
|
9 |
+
Methods:
|
10 |
+
|
11 |
+
forward(self, x: torch.Tensor)
|
12 |
+
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of
|
13 |
+
shape NCHW (features should be sorted in descending order according to spatial resolution, starting
|
14 |
+
with resolution same as input `x` tensor).
|
15 |
+
|
16 |
+
Input: `x` with shape (1, 3, 64, 64)
|
17 |
+
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes
|
18 |
+
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8),
|
19 |
+
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ)
|
20 |
+
|
21 |
+
also should support number of features according to specified depth, e.g. if depth = 5,
|
22 |
+
number of feature tensors = 6 (one with same resolution as input and 5 downsampled),
|
23 |
+
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled).
|
24 |
+
"""
|
25 |
+
import torch.nn as nn
|
26 |
+
from efficientnet_pytorch import EfficientNet
|
27 |
+
from efficientnet_pytorch.utils import url_map, url_map_advprop, get_model_params
|
28 |
+
|
29 |
+
from ._base import EncoderMixin
|
30 |
+
|
31 |
+
|
32 |
+
class EfficientNetEncoder(EfficientNet, EncoderMixin):
|
33 |
+
def __init__(self, stage_idxs, out_channels, model_name, depth=5):
|
34 |
+
|
35 |
+
blocks_args, global_params = get_model_params(model_name, override_params=None)
|
36 |
+
super().__init__(blocks_args, global_params)
|
37 |
+
|
38 |
+
self._stage_idxs = stage_idxs
|
39 |
+
self._out_channels = out_channels
|
40 |
+
self._depth = depth
|
41 |
+
self._in_channels = 3
|
42 |
+
|
43 |
+
del self._fc
|
44 |
+
|
45 |
+
def get_stages(self):
|
46 |
+
return [
|
47 |
+
nn.Identity(),
|
48 |
+
nn.Sequential(self._conv_stem, self._bn0, self._swish),
|
49 |
+
self._blocks[:self._stage_idxs[0]],
|
50 |
+
self._blocks[self._stage_idxs[0]:self._stage_idxs[1]],
|
51 |
+
self._blocks[self._stage_idxs[1]:self._stage_idxs[2]],
|
52 |
+
self._blocks[self._stage_idxs[2]:],
|
53 |
+
]
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
stages = self.get_stages()
|
57 |
+
|
58 |
+
block_number = 0.
|
59 |
+
drop_connect_rate = self._global_params.drop_connect_rate
|
60 |
+
|
61 |
+
features = []
|
62 |
+
for i in range(self._depth + 1):
|
63 |
+
|
64 |
+
# Identity and Sequential stages
|
65 |
+
if i < 2:
|
66 |
+
x = stages[i](x)
|
67 |
+
|
68 |
+
# Block stages need drop_connect rate
|
69 |
+
else:
|
70 |
+
for module in stages[i]:
|
71 |
+
drop_connect = drop_connect_rate * block_number / len(self._blocks)
|
72 |
+
block_number += 1.
|
73 |
+
x = module(x, drop_connect)
|
74 |
+
|
75 |
+
features.append(x)
|
76 |
+
|
77 |
+
return features
|
78 |
+
|
79 |
+
def load_state_dict(self, state_dict, **kwargs):
|
80 |
+
state_dict.pop("_fc.bias", None)
|
81 |
+
state_dict.pop("_fc.weight", None)
|
82 |
+
super().load_state_dict(state_dict, **kwargs)
|
83 |
+
|
84 |
+
|
85 |
+
def _get_pretrained_settings(encoder):
|
86 |
+
pretrained_settings = {
|
87 |
+
"imagenet": {
|
88 |
+
"mean": [0.485, 0.456, 0.406],
|
89 |
+
"std": [0.229, 0.224, 0.225],
|
90 |
+
"url": url_map[encoder],
|
91 |
+
"input_space": "RGB",
|
92 |
+
"input_range": [0, 1],
|
93 |
+
},
|
94 |
+
"advprop": {
|
95 |
+
"mean": [0.5, 0.5, 0.5],
|
96 |
+
"std": [0.5, 0.5, 0.5],
|
97 |
+
"url": url_map_advprop[encoder],
|
98 |
+
"input_space": "RGB",
|
99 |
+
"input_range": [0, 1],
|
100 |
+
}
|
101 |
+
}
|
102 |
+
return pretrained_settings
|
103 |
+
|
104 |
+
|
105 |
+
efficient_net_encoders = {
|
106 |
+
"efficientnet-b0": {
|
107 |
+
"encoder": EfficientNetEncoder,
|
108 |
+
"pretrained_settings": _get_pretrained_settings("efficientnet-b0"),
|
109 |
+
"params": {
|
110 |
+
"out_channels": (3, 32, 24, 40, 112, 320),
|
111 |
+
"stage_idxs": (3, 5, 9, 16),
|
112 |
+
"model_name": "efficientnet-b0",
|
113 |
+
},
|
114 |
+
},
|
115 |
+
"efficientnet-b1": {
|
116 |
+
"encoder": EfficientNetEncoder,
|
117 |
+
"pretrained_settings": _get_pretrained_settings("efficientnet-b1"),
|
118 |
+
"params": {
|
119 |
+
"out_channels": (3, 32, 24, 40, 112, 320),
|
120 |
+
"stage_idxs": (5, 8, 16, 23),
|
121 |
+
"model_name": "efficientnet-b1",
|
122 |
+
},
|
123 |
+
},
|
124 |
+
"efficientnet-b2": {
|
125 |
+
"encoder": EfficientNetEncoder,
|
126 |
+
"pretrained_settings": _get_pretrained_settings("efficientnet-b2"),
|
127 |
+
"params": {
|
128 |
+
"out_channels": (3, 32, 24, 48, 120, 352),
|
129 |
+
"stage_idxs": (5, 8, 16, 23),
|
130 |
+
"model_name": "efficientnet-b2",
|
131 |
+
},
|
132 |
+
},
|
133 |
+
"efficientnet-b3": {
|
134 |
+
"encoder": EfficientNetEncoder,
|
135 |
+
"pretrained_settings": _get_pretrained_settings("efficientnet-b3"),
|
136 |
+
"params": {
|
137 |
+
"out_channels": (3, 40, 32, 48, 136, 384),
|
138 |
+
"stage_idxs": (5, 8, 18, 26),
|
139 |
+
"model_name": "efficientnet-b3",
|
140 |
+
},
|
141 |
+
},
|
142 |
+
"efficientnet-b4": {
|
143 |
+
"encoder": EfficientNetEncoder,
|
144 |
+
"pretrained_settings": _get_pretrained_settings("efficientnet-b4"),
|
145 |
+
"params": {
|
146 |
+
"out_channels": (3, 48, 32, 56, 160, 448),
|
147 |
+
"stage_idxs": (6, 10, 22, 32),
|
148 |
+
"model_name": "efficientnet-b4",
|
149 |
+
},
|
150 |
+
},
|
151 |
+
"efficientnet-b5": {
|
152 |
+
"encoder": EfficientNetEncoder,
|
153 |
+
"pretrained_settings": _get_pretrained_settings("efficientnet-b5"),
|
154 |
+
"params": {
|
155 |
+
"out_channels": (3, 48, 40, 64, 176, 512),
|
156 |
+
"stage_idxs": (8, 13, 27, 39),
|
157 |
+
"model_name": "efficientnet-b5",
|
158 |
+
},
|
159 |
+
},
|
160 |
+
"efficientnet-b6": {
|
161 |
+
"encoder": EfficientNetEncoder,
|
162 |
+
"pretrained_settings": _get_pretrained_settings("efficientnet-b6"),
|
163 |
+
"params": {
|
164 |
+
"out_channels": (3, 56, 40, 72, 200, 576),
|
165 |
+
"stage_idxs": (9, 15, 31, 45),
|
166 |
+
"model_name": "efficientnet-b6",
|
167 |
+
},
|
168 |
+
},
|
169 |
+
"efficientnet-b7": {
|
170 |
+
"encoder": EfficientNetEncoder,
|
171 |
+
"pretrained_settings": _get_pretrained_settings("efficientnet-b7"),
|
172 |
+
"params": {
|
173 |
+
"out_channels": (3, 64, 48, 80, 224, 640),
|
174 |
+
"stage_idxs": (11, 18, 38, 55),
|
175 |
+
"model_name": "efficientnet-b7",
|
176 |
+
},
|
177 |
+
},
|
178 |
+
}
|