ece / app.py
jordyvl's picture
app and ece done
efa98d8
raw
history blame
4.53 kB
import evaluate
import numpy as np
import pandas as pd
import ast
import json
import gradio as gr
from evaluate.utils import launch_gradio_widget
from ece import ECE
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
sns.set_context("paper", font_scale=1) # 2
# plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams['figure.dpi'] = 300
plt.switch_backend('agg') #; https://stackoverflow.com/questions/14694408/runtimeerror-main-thread-is-not-in-main-loop
sliders = [
gr.Slider(0, 100, value=10, label="n_bins"),
gr.Slider(0, 100, value=None, label="bin_range", visible=False), #DEV: need to have a double slider
gr.Dropdown(choices=["equal-range", "equal-mass"], value="equal-range", label="scheme"),
gr.Dropdown(choices=["upper-edge", "center"], value="upper-edge", label="proxy"),
gr.Dropdown(choices=[1, 2, np.inf], value=1, label="p"),
]
slider_defaults = [slider.value for slider in sliders]
# example data
df = dict()
df["predictions"] = [[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1, 0.2]]
df["references"] = [0, 1, 2]
component = gr.inputs.Dataframe(
headers=["predictions", "references"], col_count=2, datatype="number", type="pandas"
)
component.value = [
[[0.6, 0.2, 0.2], 0],
[[0.7, 0.1, 0.2], 2],
[[0, 0.95, 0.05], 1],
]
sample_data = [[component] + slider_defaults] ##json.dumps(df)
metric = ECE()
# module = evaluate.load("jordyvl/ece")
# launch_gradio_widget(module)
"""
Switch inputs and compute_fn
"""
def reliability_plot(results):
fig = plt.figure()
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
n_bins = len(results["y_bar"])
bin_range = [
results["y_bar"][0] - results["y_bar"][0],
results["y_bar"][-1],
] # np.linspace(0, 1, n_bins)
# if upper edge then minus binsize; same for center [but half]
ranged = np.linspace(bin_range[0], bin_range[1], n_bins)
ax1.plot(
ranged,
ranged,
color="darkgreen",
ls="dotted",
label="Perfect",
)
# ax1.plot(results["y_bar"], results["y_bar"], color="darkblue", label="Perfect")
anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
bin_freqs = np.zeros(n_bins)
bin_freqs[anindices] = results["bin_freq"]
ax2.hist(results["y_bar"], results["y_bar"], weights=bin_freqs)
#widths = np.diff(results["y_bar"])
for j, bin in enumerate(results["y_bar"]):
perfect = results["y_bar"][j]
empirical = results["p_bar"][j]
if np.isnan(empirical):
continue
ax1.bar([perfect], height=[empirical], width=-ranged[j], align="edge", color="lightblue")
if perfect == empirical:
continue
acc_plt = ax2.axvline(
x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy"
)
conf_plt = ax2.axvline(
x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
)
ax2.legend(handles=[acc_plt, conf_plt])
#Bin differences
ax1.set_ylabel("Conditional Expectation")
ax1.set_ylim([-0.05, 1.05]) #respective to bin range
ax1.legend(loc="lower right")
ax1.set_title("Reliability Diagram")
#Bin frequencies
ax2.set_xlabel("Confidence")
ax2.set_ylabel("Count")
ax2.legend(loc="upper left")#, ncol=2
plt.tight_layout()
return fig
def compute_and_plot(data, n_bins, bin_range, scheme, proxy, p):
# DEV: check on invalid datatypes with better warnings
if isinstance(data, pd.DataFrame):
data.dropna(inplace=True)
predictions = [
ast.literal_eval(prediction) if not isinstance(prediction, list) else prediction
for prediction in data["predictions"]
]
references = [reference for reference in data["references"]]
results = metric._compute(
predictions,
references,
n_bins=n_bins,
# bin_range=None,#not needed
scheme=scheme,
proxy=proxy,
p=p,
detail=True,
)
plot = reliability_plot(results)
return results["ECE"], plot #plt.gcf()
outputs = [gr.outputs.Textbox(label="ECE"), gr.Plot(label="Reliability diagram")]
iface = gr.Interface(
fn=compute_and_plot,
inputs=[component] + sliders,
outputs=outputs,
description=metric.info.description,
article=metric.info.citation,
# examples=sample_data; # ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
).launch()