File size: 5,303 Bytes
b81628e
6a39113
 
 
 
3f722df
6a39113
 
 
 
 
0736615
6a39113
 
 
 
0736615
 
6a39113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897eeff
 
 
 
 
 
 
 
 
6a39113
897eeff
 
 
 
 
 
 
 
 
 
 
6a39113
 
 
 
 
 
 
 
897eeff
 
6a39113
897eeff
 
6a39113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897eeff
 
6a39113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import evaluate
import json
import sys
from pathlib import Path
import gradio as gr

import numpy as np
import pandas as pd
import ast
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

plt.rcParams["figure.dpi"] = 300
plt.switch_backend(
    "agg"
)  # ; https://stackoverflow.com/questions/14694408/runtimeerror-main-thread-is-not-in-main-loop


def default_plot():
    fig = plt.figure()
    ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
    ax2 = plt.subplot2grid((3, 1), (2, 0))
    ranged = np.linspace(0, 1, 10)
    ax1.plot(
        ranged,
        ranged,
        color="darkgreen",
        ls="dotted",
        label="Perfect",
    )

    # Bin differences
    ax1.set_ylabel("Conditional Expectation")
    ax1.set_ylim([0, 1.05])
    ax1.set_title("Reliability Diagram")
    ax1.set_xlim([-0.05, 1.05])  # respective to bin range

    # Bin frequencies
    ax2.set_xlabel("Confidence")
    ax2.set_ylabel("Count")
    ax2.set_xlim([-0.05, 1.05])  # respective to bin range

    return fig, ax1, ax2


def reliability_plot(results):
    # DEV: might still need to write tests in case of equal mass binning
    # DEV: nicer would be to plot like a polygon
    # see: https://github.com/markus93/fit-on-the-test/blob/main/Experiments_Synthetic/binnings.py

    fig, ax1, ax2 = default_plot()

    # Bin differences
    bins_with_left_edge = np.insert(results["y_bar"], 0, 0, axis=0)
    bins_with_right_edge = np.insert(results["y_bar"], -1, 1.0, axis=0)
    bins_with_leftright_edge = np.insert(bins_with_left_edge, -1, 1.0, axis=0)
    weights = np.nan_to_num(results["p_bar"], copy=True, nan=0)

    # NOTE: the histogram API is strange
    _, _, patches = ax1.hist(
        bins_with_left_edge,
        weights=weights,
        bins=bins_with_leftright_edge,
    )
    for b in range(len(patches)):
        perfect = bins_with_right_edge[b]  # if b != n_bins else
        empirical = weights[b]  # patches[b]._height
        bin_color = (
            "limegreen"
            if perfect == empirical
            else "dodgerblue"
            if empirical < perfect
            else "orangered"
        )
        patches[b].set_facecolor(bin_color)  # color based on over/underconfidence

    ax1handles = [
        mpatches.Patch(color="orangered", label="Overconfident"),
        mpatches.Patch(color="limegreen", label="Perfect", linestyle="dotted"),
        mpatches.Patch(color="dodgerblue", label="Underconfident"),
    ]

    # Bin frequencies
    anindices = np.where(~np.isnan(results["p_bar"]))[0]
    bin_freqs = np.zeros(len(results["p_bar"]))
    bin_freqs[anindices] = results["bin_freq"]
    ax2.hist(
        bins_with_left_edge, weights=bin_freqs, color="midnightblue", bins=bins_with_leftright_edge
    )

    acc_plt = ax2.axvline(x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy")
    conf_plt = ax2.axvline(
        x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
    )

    ax1.legend(loc="lower right", handles=ax1handles)
    ax2.legend(handles=[acc_plt, conf_plt])
    ax1.set_xticks(bins_with_left_edge)
    ax2.set_xticks(bins_with_left_edge)
    plt.tight_layout()
    return fig


def compute_and_plot(data, n_bins, bin_range, scheme, proxy, p):
    # DEV: check on invalid datatypes with better warnings

    if isinstance(data, pd.DataFrame):
        data.dropna(inplace=True)

    predictions = [
        ast.literal_eval(prediction) if not isinstance(prediction, list) else prediction
        for prediction in data["predictions"]
    ]
    references = [reference for reference in data["references"]]

    results = metric._compute(
        predictions,
        references,
        n_bins=n_bins,
        scheme=scheme,
        proxy=proxy,
        p=p,
        detail=True,
    )
    plot = reliability_plot(results)
    return results["ECE"], plot


sliders = [
    gr.Slider(0, 100, value=10, label="n_bins"),
    gr.Slider(
        0, 100, value=None, label="bin_range", visible=False
    ),  # DEV: need to have a double slider
    gr.Dropdown(choices=["equal-range", "equal-mass"], value="equal-range", label="scheme"),
    gr.Dropdown(choices=["upper-edge", "center"], value="upper-edge", label="proxy"),
    gr.Dropdown(choices=[1, 2, np.inf], value=1, label="p"),
]

slider_defaults = [slider.value for slider in sliders]

# example data
component = gr.inputs.Dataframe(
    headers=["predictions", "references"], col_count=2, datatype="number", type="pandas"
)

component.value = [
    [[0.6, 0.2, 0.2], 0],
    [[0.7, 0.1, 0.2], 2],
    [[0, 0.95, 0.05], 1],
]
sample_data = [[component] + slider_defaults]

local_path = Path(sys.path[0])
metric = evaluate.load("jordyvl/ece")
outputs = [gr.outputs.Textbox(label="ECE"), gr.Plot(label="Reliability diagram")]
# outputs[1].value = default_plot().__dict__ #DEV: Does not work in gradio; needs to be JSON encoded


iface = gr.Interface(
    fn=compute_and_plot,
    inputs=[component] + sliders,
    outputs=outputs,
    description=metric.info.description,
    article=evaluate.utils.parse_readme(local_path / "README.md"),
    title=f"Metric: {metric.name}",
    # examples=sample_data; #DEV: ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
).launch()