Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
|
4 |
-
# gr.load("models/microsoft/Phi-3.5-mini-instruct", max_new_tokens=50).launch(share=True)
|
5 |
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
|
15 |
|
16 |
-
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
22 |
-
import torch
|
23 |
|
24 |
-
# Load the model and tokenizer
|
25 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True)
|
26 |
-
model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True)
|
27 |
|
28 |
-
# Define the role prompt for advertisement assistance
|
29 |
-
# role_prompt = "You are an advertisement assistant. Respond professionally and helpfully to advertising-related questions.\n\n"
|
30 |
|
31 |
-
# Function to generate responses
|
32 |
-
def generate_response(user_input):
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
# Set up Gradio interface
|
49 |
-
interface = gr.Interface(
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
)
|
56 |
|
57 |
-
# Launch the Gradio app with sharing enabled
|
58 |
-
interface.launch(share=True)
|
59 |
|
60 |
|
61 |
# import gradio as gr
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
|
|
|
4 |
|
5 |
+
model = gr.load("models/microsoft/Phi-3.5-mini-instruct").
|
6 |
|
7 |
+
|
8 |
+
gradio_app = gr.Interface(
|
9 |
+
fn=model,
|
10 |
+
inputs="text",
|
11 |
+
outputs="text",
|
12 |
+
max_batch_size=50,
|
13 |
+
title="Advertisment companion",
|
14 |
+
)
|
15 |
|
16 |
|
17 |
|
18 |
+
gradio_app.launch(share=True)
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
24 |
+
# import torch
|
25 |
|
26 |
+
# # Load the model and tokenizer
|
27 |
+
# tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True)
|
28 |
+
# model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True)
|
29 |
|
30 |
+
# # Define the role prompt for advertisement assistance
|
31 |
+
# # role_prompt = "You are an advertisement assistant. Respond professionally and helpfully to advertising-related questions.\n\n"
|
32 |
|
33 |
+
# # Function to generate responses
|
34 |
+
# def generate_response(user_input):
|
35 |
+
# # Prepend role information to user input
|
36 |
+
# # input_text = user_input
|
37 |
|
38 |
+
# # Tokenize and generate response
|
39 |
+
# inputs = tokenizer(user_input, return_tensors="pt")
|
40 |
+
# outputs = model.generate(
|
41 |
+
# **inputs,
|
42 |
+
# max_new_tokens=100, # Increase this if you want longer responses
|
43 |
+
# # Nucleus sampling to control randomness
|
44 |
+
# )
|
45 |
|
46 |
+
# # Decode and return the response
|
47 |
+
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
+
# return response
|
49 |
|
50 |
+
# # Set up Gradio interface
|
51 |
+
# interface = gr.Interface(
|
52 |
+
# fn=generate_response,
|
53 |
+
# inputs="text",
|
54 |
+
# outputs="text",
|
55 |
+
# title="Advertisement Assistant Chatbot",
|
56 |
+
# description="Ask me anything related to advertising. I'm here to help!"
|
57 |
+
# )
|
58 |
|
59 |
+
# # Launch the Gradio app with sharing enabled
|
60 |
+
# interface.launch(share=True)
|
61 |
|
62 |
|
63 |
# import gradio as gr
|