Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# gr.load("models/microsoft/Phi-3.5-mini-instruct", max_batch_size=1000).launch(share=True) | |
# def generate_responce(user_input): | |
# gr.load("models/microsoft/Phi-3.5-mini-instruct") | |
# inputs = tokenize(user_input, return_tensor="pt") | |
# outputs = | |
# gradio_app = gr.Interface( | |
# fn=generate_responce, | |
# inputs="text", | |
# outputs="text", | |
# max_batch_size=50, | |
# title="Advertisment companion", | |
# ) | |
# from transformers import AutoTokenizer, AutoModelForCausalLM | |
# import torch | |
# # Load the model and tokenizer | |
# tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True) | |
# model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True) | |
# # Define the role prompt for advertisement assistance | |
# # role_prompt = "You are an advertisement assistant. Respond professionally and helpfully to advertising-related questions.\n\n" | |
# # Function to generate responses | |
# def generate_response(user_input): | |
# # Prepend role information to user input | |
# # input_text = user_input | |
# # Tokenize and generate response | |
# inputs = tokenizer(user_input, return_tensors="pt") | |
# outputs = model.generate( | |
# **inputs, | |
# max_new_tokens=100, # Increase this if you want longer responses | |
# # Nucleus sampling to control randomness | |
# ) | |
# # Decode and return the response | |
# response = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
# return response | |
# # Set up Gradio interface | |
# interface = gr.Interface( | |
# fn=generate_response, | |
# inputs="text", | |
# outputs="text", | |
# title="Advertisement Assistant Chatbot", | |
# description="Ask me anything related to advertising. I'm here to help!" | |
# ) | |
# # Launch the Gradio app with sharing enabled | |
# interface.launch(share=True) | |
# import gradio as gr | |
# from transformers import pipeline | |
# # Load the model pipeline for text generation | |
# generator = pipeline("text-generation", model="microsoft/Phi-3.5-mini-instruct") | |
# # Define the role prompt for advertisement assistance | |
# role_prompt = "You are an advertisement assistant. Respond professionally and helpfully to advertising-related questions.\n\n" | |
# # Function to generate responses | |
# def generate_response(user_input): | |
# input_text = role_prompt + user_input | |
# response = generator(input_text, max_new_tokens=50, temperature=0.7, top_p=0.9) | |
# return response[0]["generated_text"] | |
# # Set up Gradio interface | |
# interface = gr.Interface( | |
# fn=generate_response, | |
# inputs="text", | |
# outputs="text", | |
# title="Advertisement Assistant Chatbot", | |
# description="Ask me anything related to advertising. I'm here to help!" | |
# ) | |
# # Launch the Gradio app with sharing enabled | |
# interface.launch(share=True) | |
# import gradio as gr | |
# # Load the model using gr.load() | |
# model_interface = gr.load("models/microsoft/Phi-3.5-mini-instruct") | |
# # Create a wrapper interface to customize the appearance | |
# interface = gr.Interface( | |
# fn=model_interface, | |
# inputs="text", | |
# outputs="text", | |
# title="Advertisement Assistant Chatbot", | |
# description="Ask me anything related to advertising. I'm here to help! This assistant provides professional guidance on advertising queries.", | |
# theme="default", # Optional: Choose a theme or style | |
# ) | |
# # Launch with sharing enabled | |
# interface.launch(share=True) | |
import gradio as gr | |
from transformers import pipeline | |
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
def predict(input_img): | |
predictions = pipeline(input_img) | |
return input_img, {p["label"]: p["score"] for p in predictions} | |
gradio_app = gr.Interface( | |
predict, | |
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), | |
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], | |
title="Hot Dog? Or Not?", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() | |