import gradio as gr import os import gc import json import numpy as np import pandas as pd import matplotlib.pyplot as plt from collections import Counter from sklearn.preprocessing import LabelEncoder from keras.models import Model from keras.regularizers import l2 from keras.constraints import max_norm from keras.utils import to_categorical from keras.preprocessing.text import Tokenizer from keras.utils import pad_sequences from keras.callbacks import EarlyStopping from keras.layers import Input, Dense, Dropout, Flatten, Activation from keras.layers import Conv1D, Add, MaxPooling1D, BatchNormalization from keras.layers import Embedding, Bidirectional, LSTM, CuDNNLSTM, GlobalMaxPooling1D import tensorflow as tf from huggingface_hub import hf_hub_url, cached_download class Sequence: codes = {c: i+1 for i, c in enumerate(['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'])} @classmethod def integer_encoding(cls, data): """ - Encodes code sequence to integer values. - 20 common amino acids are taken into consideration and remaining four are categorized as 0. """ return np.array([cls.codes.get(code, 0) for code in data]) @classmethod def prepare(cls, sequence): sequence = sequence.strip().upper() ie = cls.integer_encoding(sequence) max_length = 100 padded_ie = pad_sequences([ie], maxlen=max_length, padding='post', truncating='post') all_ohe = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] + [0]*(100-21)) return to_categorical(np.array([padded_ie[0], all_ohe]))[:1] def residual_block(data, filters, d_rate): """ _data: input _filters: convolution filters _d_rate: dilation rate """ shortcut = data bn1 = BatchNormalization()(data) act1 = Activation('relu')(bn1) conv1 = Conv1D(filters, 1, dilation_rate=d_rate, padding='same', kernel_regularizer=l2(0.001))(act1) #bottleneck convolution bn2 = BatchNormalization()(conv1) act2 = Activation('relu')(bn2) conv2 = Conv1D(filters, 3, padding='same', kernel_regularizer=l2(0.001))(act2) #skip connection x = Add()([conv2, shortcut]) return x def get_model(): # model x_input = Input(shape=(100, 21)) #initial conv conv = Conv1D(128, 1, padding='same')(x_input) # per-residue representation res1 = residual_block(conv, 128, 2) res2 = residual_block(res1, 128, 3) x = MaxPooling1D(3)(res2) x = Dropout(0.5)(x) # softmax classifier x = Flatten()(x) x_output = Dense(1000, activation='softmax', kernel_regularizer=l2(0.0001))(x) model2 = Model(inputs=x_input, outputs=x_output) model2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) weights = cached_download(hf_hub_url("jonathang/Protein_Family_CNN", 'model2.h5')) model2.load_weights(weights) return model2 model = get_model() mappings_path = cached_download(hf_hub_url("jonathang/Protein_Family_CNN", 'prot_mappings.json')) with open(mappings_path) as f: prot_mappings = json.load(f) def greet(Amino_Acid_Sequence): processed_seq = Sequence.prepare(Amino_Acid_Sequence) raw_prediction = model.predict(processed_seq)[0] idx = raw_prediction.argmax() fam_asc = prot_mappings['id2fam_asc'][idx] fam_id = prot_mappings['fam_asc2fam_id'][fam_asc] gc.collect() return f"Input is {Amino_Acid_Sequence}.\nProcessed input is:\n{processed_seq}\n\nModel makes prediction:\n{raw_prediction}\nWhich gives index {idx}.\nWhich maps to family ascension {fam_asc} and ID {fam_id}" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()