File size: 5,484 Bytes
7f19394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import json
import os
import re
from pathlib import Path

import numpy as np
import torch

from disvae.models.vae import init_specific_model

MODEL_FILENAME = "model.pt"
META_FILENAME = "specs.json"


def vae2onnx(vae, p_out: str) -> None:
    if isinstance(vae, str):
        p_out = Path(p_out)
    if not p_out.exists():
        p_out.mkdir()

    device = next(vae.parameters()).device
    vae.cpu()

    # Encoder
    vae.encoder.eval()
    dummy_input_im = torch.zeros(tuple(np.concatenate([[1], vae.img_size])))
    torch.onnx.export(vae.encoder, dummy_input_im, p_out / "encoder.onnx", verbose=True)

    # Decoder
    vae.decoder.eval()
    dummy_input_latent = torch.zeros((1, vae.latent_dim))
    torch.onnx.export(
        vae.decoder, dummy_input_latent, p_out / "decoder.onnx", verbose=True
    )

    vae.to(device)  # restore device


def save_model(model, directory, metadata=None, filename=MODEL_FILENAME):
    """
    Save a model and corresponding metadata.

    Parameters
    ----------
    model : nn.Module
        Model.

    directory : str
        Path to the directory where to save the data.

    metadata : dict
        Metadata to save.
    """
    device = next(model.parameters()).device
    model.cpu()

    if metadata is None:
        # save the minimum required for loading
        metadata = dict(
            img_size=model.img_size,
            latent_dim=model.latent_dim,
            model_type=model.model_type,
        )

    save_metadata(metadata, directory)

    path_to_model = os.path.join(directory, filename)
    torch.save(model.state_dict(), path_to_model)

    model.to(device)  # restore device


def load_metadata(directory, filename=META_FILENAME):
    """Load the metadata of a training directory.

    Parameters
    ----------
    directory : string
        Path to folder where model is saved. For example './experiments/mnist'.
    """
    path_to_metadata = os.path.join(directory, filename)

    with open(path_to_metadata) as metadata_file:
        metadata = json.load(metadata_file)

    return metadata


def save_metadata(metadata, directory, filename=META_FILENAME, **kwargs):
    """Load the metadata of a training directory.

    Parameters
    ----------
    metadata:
        Object to save

    directory: string
        Path to folder where to save model. For example './experiments/mnist'.

    kwargs:
        Additional arguments to `json.dump`
    """
    path_to_metadata = os.path.join(directory, filename)

    with open(path_to_metadata, "w") as f:
        json.dump(metadata, f, indent=4, sort_keys=True, **kwargs)


def load_model(directory, is_gpu=True, filename=MODEL_FILENAME):
    """Load a trained model.

    Parameters
    ----------
    directory : string
        Path to folder where model is saved. For example './experiments/mnist'.

    is_gpu : bool
        Whether to load on GPU is available.
    """
    device = torch.device("cuda" if torch.cuda.is_available() and is_gpu else "cpu")

    path_to_model = os.path.join(directory, MODEL_FILENAME)

    metadata = load_metadata(directory)
    img_size = metadata["img_size"]
    latent_dim = metadata["latent_dim"]
    model_type = metadata["model_type"]

    path_to_model = os.path.join(directory, filename)
    model = _get_model(model_type, img_size, latent_dim, device, path_to_model)
    return model


def load_checkpoints(directory, is_gpu=True):
    """Load all chechpointed models.

    Parameters
    ----------
    directory : string
        Path to folder where model is saved. For example './experiments/mnist'.

    is_gpu : bool
        Whether to load on GPU .
    """
    checkpoints = []
    for root, _, filenames in os.walk(directory):
        for filename in filenames:
            results = re.search(r".*?-([0-9].*?).pt", filename)
            if results is not None:
                epoch_idx = int(results.group(1))
                model = load_model(root, is_gpu=is_gpu, filename=filename)
                checkpoints.append((epoch_idx, model))

    return checkpoints


def _get_model(model_type, img_size, latent_dim, device, path_to_model):
    """Load a single model.

    Parameters
    ----------
    model_type : str
        The name of the model to load. For example Burgess.
    img_size : tuple
        Tuple of the number of pixels in the image width and height.
        For example (32, 32) or (64, 64).
    latent_dim : int
        The number of latent dimensions in the bottleneck.

    device : str
        Either 'cuda' or 'cpu'
    path_to_device : str
        Full path to the saved model on the device.
    """
    model = init_specific_model(model_type, img_size, latent_dim).to(device)
    # works with state_dict to make it independent of the file structure
    model.load_state_dict(torch.load(path_to_model), strict=False)
    model.eval()

    return model


def numpy_serialize(obj):
    if type(obj).__module__ == np.__name__:
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return obj.item()
    raise TypeError("Unknown type:", type(obj))


def save_np_arrays(arrays, directory, filename):
    """Save dictionary of arrays in json file."""
    save_metadata(arrays, directory, filename=filename, default=numpy_serialize)


def load_np_arrays(directory, filename):
    """Load dictionary of arrays from json file."""
    arrays = load_metadata(directory, filename=filename)
    return {k: np.array(v) for k, v in arrays.items()}