Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import subprocess
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
import string
|
7 |
+
import random
|
8 |
+
import glob
|
9 |
+
from pypdf import PdfReader
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
|
12 |
+
# Configurações do modelo
|
13 |
+
MODEL_NAME = os.environ.get("MODEL", "Snowflake/snowflake-arctic-embed-m")
|
14 |
+
CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", 128))
|
15 |
+
DEFAULT_MAX_CHARACTERS = int(os.environ.get("DEFAULT_MAX_CHARACTERS", 258))
|
16 |
+
|
17 |
+
# Carregue o modelo de linguagem
|
18 |
+
model = SentenceTransformer(MODEL_NAME)
|
19 |
+
|
20 |
+
# Função para incorporar consultas e documentos
|
21 |
+
@spaces.GPU
|
22 |
+
def embed(queries, chunks):
|
23 |
+
query_embeddings = model.encode(queries, prompt_name="query")
|
24 |
+
document_embeddings = model.encode(chunks)
|
25 |
+
|
26 |
+
scores = query_embeddings @ document_embeddings.T
|
27 |
+
results = {}
|
28 |
+
for query, query_scores in zip(queries, scores):
|
29 |
+
chunk_idxs = [i for i in range(len(chunks))]
|
30 |
+
results[query] = list(zip(chunk_idxs, query_scores))
|
31 |
+
|
32 |
+
return results
|
33 |
+
|
34 |
+
# Função para extrair texto de arquivos PDF
|
35 |
+
def extract_text_from_pdf(reader):
|
36 |
+
full_text = ""
|
37 |
+
for idx, page in enumerate(reader.pages):
|
38 |
+
text = page.extract_text()
|
39 |
+
if len(text) > 0:
|
40 |
+
full_text += f"---- Página {idx} ----\n" + page.extract_text() + "\n\n"
|
41 |
+
|
42 |
+
return full_text.strip()
|
43 |
+
|
44 |
+
# Função para converter arquivos em texto
|
45 |
+
def convert(filename):
|
46 |
+
plain_text_filetypes = [
|
47 |
+
".txt",
|
48 |
+
".csv",
|
49 |
+
".tsv",
|
50 |
+
".md",
|
51 |
+
".yaml",
|
52 |
+
".toml",
|
53 |
+
".json",
|
54 |
+
".json5",
|
55 |
+
".jsonc",
|
56 |
+
]
|
57 |
+
|
58 |
+
if any(filename.endswith(ft) for ft in plain_text_filetypes):
|
59 |
+
with open(filename, "r") as f:
|
60 |
+
return f.read()
|
61 |
+
|
62 |
+
if filename.endswith(".pdf"):
|
63 |
+
return extract_text_from_pdf(PdfReader(filename))
|
64 |
+
|
65 |
+
raise ValueError(f"Tipo de arquivo não suportado: {filename}")
|
66 |
+
|
67 |
+
# Função para dividir texto em pedaços
|
68 |
+
def chunk_to_length(text, max_length=512):
|
69 |
+
chunks = []
|
70 |
+
while len(text) > max_length:
|
71 |
+
chunks.append(text[:max_length])
|
72 |
+
text = text[max_length:]
|
73 |
+
chunks.append(text)
|
74 |
+
return chunks
|
75 |
+
|
76 |
+
# Função para prever pedaços relevantes
|
77 |
+
@spaces.GPU
|
78 |
+
def predict(query, max_characters):
|
79 |
+
query_embedding = model.encode(query, prompt_name="query")
|
80 |
+
|
81 |
+
all_chunks = []
|
82 |
+
for filename, doc in docs.items():
|
83 |
+
similarities = doc["embeddings"] @ query_embedding.T
|
84 |
+
all_chunks.extend([(filename, chunk, sim) for chunk, sim in zip(doc["chunks"], similarities)])
|
85 |
+
|
86 |
+
all_chunks.sort(key=lambda x: x[2], reverse=True)
|
87 |
+
|
88 |
+
relevant_chunks = {}
|
89 |
+
total_chars = 0
|
90 |
+
for filename, chunk, _ in all_chunks:
|
91 |
+
if total_chars + len(chunk) <= max_characters:
|
92 |
+
if filename not in relevant_chunks:
|
93 |
+
relevant_chunks[filename] = []
|
94 |
+
relevant_chunks[filename].append(chunk)
|
95 |
+
total_chars += len(chunk)
|
96 |
+
else:
|
97 |
+
break
|
98 |
+
|
99 |
+
return {"relevant_chunks": relevant_chunks}
|
100 |
+
|
101 |
+
# Carregue os documentos
|
102 |
+
docs = {}
|
103 |
+
for filename in glob.glob("src/*"):
|
104 |
+
if filename.endswith("add_your_files_here"):
|
105 |
+
continue
|
106 |
+
|
107 |
+
converted_doc = convert(filename)
|
108 |
+
chunks = chunk_to_length(converted_doc, CHUNK_SIZE)
|
109 |
+
embeddings = model.encode(chunks)
|
110 |
+
|
111 |
+
docs[filename] = {
|
112 |
+
"chunks": chunks,
|
113 |
+
"embeddings": embeddings,
|
114 |
+
}
|
115 |
+
|
116 |
+
# Crie a interface da ferramenta
|
117 |
+
gr.Interface(
|
118 |
+
predict,
|
119 |
+
inputs=[
|
120 |
+
gr.Textbox(label="Consulta feita sobre os documentos"),
|
121 |
+
gr.Number(label="Máximo de caracteres de saída", value=DEFAULT_MAX_CHARACTERS),
|
122 |
+
],
|
123 |
+
outputs=[gr.Dict(label="Pedaços relevantes")],
|
124 |
+
title="Demonstração do modelo de ferramenta da comunidade ",
|
125 |
+
description='''"Para usar o no HuggingChat com seus próprios documentos
|
126 |
+
, comece clonando este espaço, adicione seus documentos à pasta `src` e então crie uma ferramenta comunitária com este espaço!"
|
127 |
+
,'''
|
128 |
+
).launch()
|