Spaces:
Runtime error
Runtime error
johnbakerjr
commited on
Commit
•
97d64bb
1
Parent(s):
64d5725
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from dataprep.clean import clean_country
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
|
7 |
+
gdp_per_capita = pd.read_csv('./data/country_gdp_per_capita_worldbank.csv')
|
8 |
+
gdp_per_capita = gdp_per_capita[['Country Name', '2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019', '2020']]
|
9 |
+
|
10 |
+
usa = pd.read_csv('./data/USAData_RenewableInvestment_2010-2020.csv').set_index('Country')
|
11 |
+
|
12 |
+
## read plotly data ##
|
13 |
+
|
14 |
+
temp_delta_plotly = pd.read_csv('./data/Annual_Surface_Temperature_Change.csv')
|
15 |
+
invest_plotly = pd.read_csv('data/Environmental_Protection_Expenditures.csv')
|
16 |
+
gdp_per_capita_plotly = gdp_per_capita.copy()
|
17 |
+
|
18 |
+
## prepare data for plotly ##
|
19 |
+
|
20 |
+
gdp_per_capita_plotly = gdp_per_capita_plotly.rename(columns={'Country Name': 'Country'})
|
21 |
+
|
22 |
+
# look up ISO3 codes for countries
|
23 |
+
gdp_per_capita_plotly = clean_country(gdp_per_capita_plotly, "Country", output_format="alpha-3").rename(columns={'Country_clean': 'ISO3'})
|
24 |
+
gdp_per_capita_plotly = gdp_per_capita_plotly[['Country', 'ISO3', '2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019', '2020']]
|
25 |
+
gdp_per_capita_plotly = gdp_per_capita_plotly.rename(columns={'2010': 2010, '2011': 2011, '2012': 2012, '2013': 2013, '2014': 2014, '2015': 2015, '2016': 2016, '2017': 2017, '2018': 2018, '2019': 2019, '2020': 2020})
|
26 |
+
|
27 |
+
temp_delta_plotly = temp_delta_plotly[['Country', 'ISO3', 'F2010', 'F2011', 'F2012', 'F2013', 'F2014', 'F2015', 'F2016', 'F2017', 'F2018', 'F2019', 'F2020']]
|
28 |
+
temp_delta_plotly = temp_delta_plotly.rename(columns={'F2010': 2010, 'F2011': 2011, 'F2012': 2012, 'F2013': 2013, 'F2014': 2014, 'F2015': 2015, 'F2016': 2016, 'F2017': 2017, 'F2018': 2018, 'F2019': 2019, 'F2020': 2020})
|
29 |
+
|
30 |
+
usa2 = usa.copy().reset_index()
|
31 |
+
usa2['ISO3'] = 'USA'
|
32 |
+
invest_plotly = invest_plotly[invest_plotly['Unit'] == 'Percent of GDP'].fillna(int(0))
|
33 |
+
invest_plotly = invest_plotly[['Country', 'ISO3', 'F2010', 'F2011', 'F2012', 'F2013', 'F2014', 'F2015', 'F2016', 'F2017', 'F2018', 'F2019', 'F2020']].reset_index(drop=True)
|
34 |
+
invest_plotly = pd.concat([invest_plotly, usa2])
|
35 |
+
invest_plotly = invest_plotly.groupby(['ISO3']).agg('sum').reset_index()
|
36 |
+
invest_plotly = invest_plotly.rename(columns={'F2010': 2010, 'F2011': 2011, 'F2012': 2012, 'F2013': 2013, 'F2014': 2014, 'F2015': 2015, 'F2016': 2016, 'F2017': 2017, 'F2018': 2018, 'F2019': 2019, 'F2020': 2020})
|
37 |
+
|
38 |
+
temp_delta_plotly = temp_delta_plotly.melt(id_vars=['ISO3'], value_vars=[2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020], var_name='Year', value_name='Temp_Change')
|
39 |
+
gdp_per_capita_plotly = gdp_per_capita_plotly.melt(id_vars=['ISO3', 'Country'], value_vars=[2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020], var_name='Year', value_name='GDP_Per_Capita')
|
40 |
+
invest_plotly = invest_plotly.melt(id_vars=['ISO3'], value_vars=[2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020], var_name='Year', value_name='Investment_Percent')
|
41 |
+
|
42 |
+
plotly_data = pd.merge(temp_delta_plotly, invest_plotly, on=['ISO3', 'Year'])
|
43 |
+
plotly_data = pd.merge(gdp_per_capita_plotly, plotly_data, on=['ISO3', 'Year'])
|
44 |
+
|
45 |
+
# drop all YEMEN data, as there is missing GDP data and no temp_change data
|
46 |
+
plotly_data = plotly_data.drop(plotly_data.loc[plotly_data['ISO3']=='YEM'].index)
|
47 |
+
|
48 |
+
# drop 2010-2012 data for SOMALIA, as there is no GDP data
|
49 |
+
plotly_data = plotly_data.drop(plotly_data.loc[(plotly_data['ISO3']=='SOM') & (plotly_data['Year']<2013)].index)
|
50 |
+
|
51 |
+
new_country_data = plotly_data.copy()
|
52 |
+
new_country_data = new_country_data.groupby('Country').agg({'Temp_Change': 'mean', 'Investment_Percent': 'mean', 'GDP_Per_Capita': 'mean'})
|
53 |
+
new_country_data['Temp_Change'] = new_country_data['Temp_Change'] + .25
|
54 |
+
new_country_data = new_country_data.rename(columns={'Temp_Change': 'temp_delta_avg', 'Investment_Percent': 'renew_invest_avg', 'GDP_Per_Capita': 'gdp_per_capita_avg'})
|
55 |
+
|
56 |
+
g20 = ['Argentina', 'Australia', 'Brazil', 'Canada', 'China', 'France', 'Germany', 'India', 'Indonesia', 'Italy', 'Japan', 'Republic of Korea', 'Mexico', 'Russia', 'Saudi Arabia', 'South Africa', 'Turkey', 'United Kingdom', 'United States', 'Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'Greece', 'Hungary', 'Ireland', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Netherlands', 'Poland', 'Portugal', 'Romania', 'Slovakia', 'Slovenia', 'Spain', 'Sweden']
|
57 |
+
new_country_data['g20'] = new_country_data.index.isin(g20).tolist()
|
58 |
+
|
59 |
+
g20_countries = new_country_data.loc[new_country_data['g20'] == True].index.to_list()
|
60 |
+
|
61 |
+
|
62 |
+
plotly_data['Temp_Change'] = plotly_data['Temp_Change'] + .25
|
63 |
+
|
64 |
+
p1 = (plotly_data['Investment_Percent'] > 2)
|
65 |
+
p2 = (plotly_data['Temp_Change'] < 1.5)
|
66 |
+
|
67 |
+
plotly_data['color_code'] = np.where(p1 & p2, '#46725D', "False")
|
68 |
+
plotly_data['color_code'] = np.where(p1 & ~p2, '#A46D13', plotly_data['color_code'])
|
69 |
+
plotly_data['color_code'] = np.where(~p1 & p2, '#505693', plotly_data['color_code'])
|
70 |
+
plotly_data['color_code'] = np.where(~p1 & ~p2, '#9A381D', plotly_data['color_code'])
|
71 |
+
|
72 |
+
# make plotly figure
|
73 |
+
|
74 |
+
dataset = plotly_data.copy()
|
75 |
+
|
76 |
+
years = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]
|
77 |
+
|
78 |
+
# make figure
|
79 |
+
fig_dict = {
|
80 |
+
"data": [],
|
81 |
+
"layout": {},
|
82 |
+
"frames": []
|
83 |
+
}
|
84 |
+
|
85 |
+
min_x_val = dataset['Temp_Change'].min()-.2
|
86 |
+
max_x_val = dataset['Temp_Change'].max()+.2
|
87 |
+
min_y_val = dataset['Investment_Percent'].min()-.2
|
88 |
+
max_y_val = dataset['Investment_Percent'].max()+.2
|
89 |
+
|
90 |
+
# fill in most of layout
|
91 |
+
fig_dict["layout"]["xaxis"] = {"range": [min_x_val, max_x_val], "title": f'Annual Temperature Above Pre-industrial Levels ({chr(176)}C)'}
|
92 |
+
fig_dict["layout"]["yaxis"] = {"range": [min_y_val, 4.5], "title": "Investment in Renewable Energy (% GDP)"} # "type": "log" makes y-axis log scale
|
93 |
+
fig_dict["layout"]["hovermode"] = "closest"
|
94 |
+
fig_dict["layout"]["updatemenus"] = [
|
95 |
+
{
|
96 |
+
"buttons": [
|
97 |
+
{
|
98 |
+
"args": [None, {"frame": {"duration": 700, "redraw": False},
|
99 |
+
"fromcurrent": True, "transition": {"duration": 500,
|
100 |
+
"easing": "quadratic-in-out"}}],
|
101 |
+
"label": "Play",
|
102 |
+
"method": "animate"
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"args": [[None], {"frame": {"duration": 0, "redraw": False},
|
106 |
+
"mode": "immediate",
|
107 |
+
"transition": {"duration": 0}}],
|
108 |
+
"label": "Pause",
|
109 |
+
"method": "animate"
|
110 |
+
}
|
111 |
+
],
|
112 |
+
"direction": "left",
|
113 |
+
"pad": {"r": 10, "t": 87},
|
114 |
+
"showactive": False,
|
115 |
+
"type": "buttons",
|
116 |
+
"x": 0.1,
|
117 |
+
"xanchor": "right",
|
118 |
+
"y": 0,
|
119 |
+
"yanchor": "top"
|
120 |
+
}
|
121 |
+
]
|
122 |
+
|
123 |
+
sliders_dict = {
|
124 |
+
"active": 0,
|
125 |
+
"yanchor": "top",
|
126 |
+
"xanchor": "left",
|
127 |
+
"currentvalue": {
|
128 |
+
"font": {"size": 20},
|
129 |
+
"prefix": "Year:",
|
130 |
+
"visible": True,
|
131 |
+
"xanchor": "right"
|
132 |
+
},
|
133 |
+
"transition": {"duration": 300, "easing": "cubic-in-out"},
|
134 |
+
"pad": {"b": 10, "t": 50},
|
135 |
+
"len": 0.9,
|
136 |
+
"x": 0.1,
|
137 |
+
"y": 0,
|
138 |
+
"steps": []
|
139 |
+
}
|
140 |
+
|
141 |
+
Countries = list(plotly_data['Country'].unique())
|
142 |
+
Countries = sorted(Countries)
|
143 |
+
|
144 |
+
# make data
|
145 |
+
year = 2010
|
146 |
+
for Country in g20_countries:
|
147 |
+
dataset_by_year = dataset[dataset["Year"] == year]
|
148 |
+
dataset_by_year_and_country = dataset_by_year[
|
149 |
+
dataset_by_year["Country"] == Country]
|
150 |
+
|
151 |
+
data_dict = {
|
152 |
+
"x": list(dataset_by_year_and_country["Temp_Change"]),
|
153 |
+
"y": list(dataset_by_year_and_country["Investment_Percent"]),
|
154 |
+
"mode": "markers",
|
155 |
+
"marker": {
|
156 |
+
"sizemode": "area",
|
157 |
+
"sizeref": 300,
|
158 |
+
"size": list(dataset_by_year_and_country["GDP_Per_Capita"]),
|
159 |
+
"color": dataset_by_year_and_country.loc[dataset_by_year_and_country['Country']==Country].color_code[dataset_by_year_and_country['Year']==year]
|
160 |
+
},
|
161 |
+
"name": Country
|
162 |
+
}
|
163 |
+
fig_dict["data"].append(data_dict)
|
164 |
+
|
165 |
+
# make frames
|
166 |
+
for year in years:
|
167 |
+
frame = {"data": [], "name": str(year)}
|
168 |
+
for Country in g20_countries:
|
169 |
+
dataset_by_year = dataset[dataset["Year"] == int(year)]
|
170 |
+
dataset_by_year_and_country = dataset_by_year[
|
171 |
+
dataset_by_year["Country"] == Country]
|
172 |
+
|
173 |
+
data_dict = {
|
174 |
+
"x": list(dataset_by_year_and_country["Temp_Change"]),
|
175 |
+
"y": list(dataset_by_year_and_country["Investment_Percent"]),
|
176 |
+
"mode": "markers",
|
177 |
+
"marker": {
|
178 |
+
"sizemode": "area",
|
179 |
+
"sizeref": 300,
|
180 |
+
"size": list(dataset_by_year_and_country["GDP_Per_Capita"]),
|
181 |
+
"color": dataset_by_year_and_country.loc[dataset_by_year_and_country['Country']==Country].color_code[dataset_by_year_and_country['Year']==year]
|
182 |
+
},
|
183 |
+
"name": Country
|
184 |
+
}
|
185 |
+
frame["data"].append(data_dict)
|
186 |
+
|
187 |
+
fig_dict["frames"].append(frame)
|
188 |
+
slider_step = {"args": [
|
189 |
+
[year],
|
190 |
+
{"frame": {"duration": 1500, "redraw": False},
|
191 |
+
"mode": "immediate",
|
192 |
+
"transition": {"duration": 1500}}
|
193 |
+
],
|
194 |
+
"label": year,
|
195 |
+
"method": "animate"}
|
196 |
+
sliders_dict["steps"].append(slider_step)
|
197 |
+
|
198 |
+
|
199 |
+
fig_dict["layout"]["sliders"] = [sliders_dict]
|
200 |
+
|
201 |
+
fig = go.Figure(fig_dict)
|
202 |
+
|
203 |
+
fig.add_hline(y=2, line_dash="dash", line_color="black", annotation_text="Investment Needed to Fully Transition to Renewable Energy by 2050", annotation_position="bottom right")
|
204 |
+
fig.add_vline(x=1.5, line_dash="dash", line_color="black", annotation_text="2050 Target Temperature Increase", annotation_position="top right")
|
205 |
+
fig.add_annotation(x=3.75, y=-.35, text="Urgent Action Needed", showarrow=False, font_size=12, bordercolor='#9A381D', font=dict(color='#9A381D'), borderpad=3)
|
206 |
+
fig.add_annotation(x=3.67, y=4.1, text="Continued Progress Needed", showarrow=False, font_size=12, bordercolor='#A46D13', font=dict(color='#A46D13'), borderpad=3)
|
207 |
+
fig.add_annotation(x=0.2, y=4.1, text="Meeting 2050 Climate Goals", showarrow=False, font_size=12, bordercolor='#46725D', font=dict(color='#46725D'), borderpad=3)
|
208 |
+
fig.add_annotation(x=0.17, y=-.35, text="Investments Falling Short", showarrow=False, font_size=12, bordercolor='#505693', font=dict(color='#505693'), borderpad=3)
|
209 |
+
|
210 |
+
fig.update_layout(
|
211 |
+
title={
|
212 |
+
'text': "G20 Countries Have Invested Little as Temperatures Dramatically Increased Over the Last Decade",
|
213 |
+
'y':0.9,
|
214 |
+
'x':0.5,
|
215 |
+
'xanchor': 'center',
|
216 |
+
'yanchor': 'top'},
|
217 |
+
showlegend=False
|
218 |
+
)
|
219 |
+
|
220 |
+
fig.show()
|