import gradio as gr import requests import os from huggingface_hub import InferenceClient,HfApi import random import json import datetime import uuid import yt_dlp import cv2 import whisper from agent import ( PREFIX, COMPRESS_DATA_PROMPT, COMPRESS_DATA_PROMPT_SMALL, LOG_PROMPT, LOG_RESPONSE, ) client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1" ) #save_data=f'https://huggingface.co/datasets/{reponame}/raw/main/' #token_self = os.environ['HF_TOKEN'] #api=HfApi(token=token_self) sizes = list(whisper._MODELS.keys()) langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values())) current_size = "base" loaded_model = whisper.load_model(current_size) VERBOSE = True MAX_HISTORY = 100 MAX_DATA = 16000 def dl(inp,img): uid=uuid.uuid4() fps="Error" out = None out_file=[] if img == None and inp !="": try: inp_out=inp.replace("https://","") inp_out=inp_out.replace("/","_").replace(".","_").replace("=","_").replace("?","_") #os.system(f'yt-dlp "{inp}" --trim-filenames 160 -o "{uid}/{inp_out}.mp4" -S res,mp4 --recode mp4') os.system(f'yt-dlp --skip-download --write-subs --write-auto-subs --sub-lang en --sub-format ttml --convert-subs srt "{inp}" -o "{uid}/{inp_out}"') f = open(f"{uid}/{inp_out}.en.srt") ft=f.readlines() line_fin="" line_out="" for line in ft: if "<" in line: line_out = line.split(">",1)[1].split("<",1)[0] else: line_out = line if not line.strip("\n").isnumeric(): line_fin+=line_out #print(ft) #out = f"{uid}/{inp_out}.mp4" #capture = cv2.VideoCapture(out) #fps = capture.get(cv2.CAP_PROP_FPS) #capture.release() out=f'{line_fin}' except Exception as e: print(e) out = None elif img !=None and inp == "": capture = cv2.VideoCapture(img) fps = capture.get(cv2.CAP_PROP_FPS) capture.release() out = f"{img}" return out def csv(segments): output = "" for segment in segments: output += f"{segment['start']},{segment['end']},{segment['text']}\n" return output def transcribe(path,lang,size): yield (None,[("","Transcribing Video...")]) #if size != current_size: loaded_model = whisper.load_model(size) current_size = size results = loaded_model.transcribe(path, language=lang) subs = ".csv" if subs == "None": yield results["text"],[("","Transcription Complete...")] elif subs == ".csv": yield csv(results["segments"]),[("","Transcription Complete...")] def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def run_gpt( prompt_template, stop_tokens, max_tokens, seed, **prompt_kwargs, ): print(seed) timestamp=datetime.datetime.now() generate_kwargs = dict( temperature=0.9, max_new_tokens=max_tokens, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=seed, ) content = PREFIX.format( timestamp=timestamp, purpose="Compile the provided data and complete the users task" ) + prompt_template.format(**prompt_kwargs) if VERBOSE: print(LOG_PROMPT.format(content)) #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) #formatted_prompt = format_prompt(f'{content}', history) stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) resp = "" for response in stream: resp += response.token.text #yield resp if VERBOSE: print(LOG_RESPONSE.format(resp)) return resp def compress_data(c, instruct, history, seed): #seed=random.randint(1,1000000000) print (f'c:: {c}') #tot=len(purpose) #print(tot) divr=int(c)/MAX_DATA divi=int(divr)+1 if divr != int(divr) else int(divr) chunk = int(int(c)/divr) print(f'chunk:: {chunk}') print(f'divr:: {divr}') print (f'divi:: {divi}') out = [] #out="" s=0 e=chunk print(f'e:: {e}') new_history="" #task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' for z in range(divi): print(f's:e :: {s}:{e}') hist = history[s:e] resp = run_gpt( COMPRESS_DATA_PROMPT_SMALL, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=16000, seed=seed, direction=instruct, knowledge="", history=hist, ) out.append(resp) #new_history = resp #print (resp) #out+=resp e=e+chunk s=s+chunk return out def compress_data_og(c, instruct, history, seed, MAX_DATA=MAX_DATA): #seed=random.randint(1,1000000000) print (c) #tot=len(purpose) #print(tot) divr=int(c)/MAX_DATA divi=int(divr)+1 if divr != int(divr) else int(divr) chunk = int(int(c)/divr) print(f'chunk:: {chunk}') print(f'divr:: {divr}') print (f'divi:: {divi}') out = [] #out="" s=0 e=chunk #print(f'e:: {e}') new_history="" #task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' for z in range(divi): print(f's:e :: {s}:{e}') hist = history[s:e] resp = run_gpt( COMPRESS_DATA_PROMPT, stop_tokens=[], max_tokens=16000, seed=seed, direction=instruct, knowledge=new_history, history=hist, ) new_history = resp print (resp) #out+=resp e=e+chunk s=s+chunk-1000 print ("final" + resp) #history = "observation: {}\n".format(resp) return resp def summarize(inp,history,mem_check,seed=None,data=None,MAX_DATA=MAX_DATA): if seed==None or seed=="": seed=random.randint(1,1000000000) seed=int(seed) json_box=[] error_box="" json_out={} rawp="Error" if inp == "": inp = "Process this data" history.clear() history = [(inp,"Summarizing Transcription...")] yield "",history,error_box,json_box if data != "Error" and data != "" and data != None: print(inp) #out = str(data) #rl = len(out) #print(f'rl:: {rl}') #c=1 #for i in str(out): # #print(f'i:: {i}') # if i == " " or i=="," or i=="\n" or i.isalpha()==True or i.isnumeric()==True: # c +=1 #print (f'c:: {c}') #json_out = compress_data(c,inp,out,seed) #history = [(inp,"Generating Report...")] #yield "", history,error_box,json_out out = str(data) print (out) rl = len(out) print(f'rl:: {rl}') c=1 for i in str(out): if i == " " or i=="," or i=="\n" or i.isalpha()==True or i.isnumeric()==True: c +=1 print (f'c2:: {c}') rawp = compress_data_og(c,inp,out,seed,MAX_DATA) history.clear() history.append((inp,rawp)) yield "", history,error_box,json_out else: rawp = "Provide a valid data source" history.clear() history.append((inp,rawp)) yield "", history,error_box,json_out ################################# def clear_fn(): return "",[(None,None)] with gr.Blocks() as app: gr.HTML("""

Video Summarizer

""") with gr.Row(): with gr.Column(): with gr.Row(): inp_url = gr.Textbox(label="Video URL") url_btn = gr.Button("Load Video") vid = gr.Video() #trans_btn=gr.Button("Transcribe") trans = gr.Textbox(interactive=True) chatbot = gr.Chatbot(label="Mixtral 8x7B Chatbot",show_copy_button=True) with gr.Row(): with gr.Column(scale=3): prompt=gr.Textbox(label = "Instructions (optional)") with gr.Column(scale=1): mem_check=gr.Checkbox(label="Memory", value=False) button=gr.Button() with gr.Row(): out_slider=gr.Slider(minimum=1000, maximum=100000, step=1, value=MAX_DATA) #models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True) with gr.Row(): stop_button=gr.Button("Stop") clear_btn = gr.Button("Clear") with gr.Row(): sz = gr.Dropdown(label="Model Size", choices=sizes, value='base') lang = gr.Dropdown(label="Language (Optional)", choices=langs, value="English") json_out=gr.JSON() e_box=gr.Textbox() #text=gr.JSON() #inp_query.change(search_models,inp_query,models_dd) blank_text=gr.Textbox() url_btn.click(dl,[inp_url,vid],trans) #trans_btn.click(transcribe,[vid,lang,sz],trans) clear_btn.click(clear_fn,None,[prompt,chatbot]) #go=button.click(transcribe,[vid,lang,sz],[trans,chatbot]).then(summarize,[prompt,chatbot,mem_check,trans],[prompt,chatbot,e_box,json_out]) go=button.click(summarize,[prompt,chatbot,mem_check,blank_text,trans,out_slider],[prompt,chatbot,e_box,json_out]) stop_button.click(None,None,None,cancels=[go]) app.queue(default_concurrency_limit=20).launch(show_api=True, show_error=True)