import matplotlib matplotlib.use('Agg') import functools import gradio as gr import matplotlib.pyplot as plt import seaborn as sns import pandas as pd # benchmark order: pytorch, tf eager, tf xla; units = ms BENCHMARK_DATA = { "Greedy Search": { "DistilGPT2": { "T4": [], "3090": [], "A100": [], }, "GPT2": { "T4": [], "3090": [], "A100": [], }, "OPT-1.3B": { "T4": [], "3090": [], "A100": [], }, "GPTJ-6B": { "T4": [], "3090": [], "A100": [], }, "T5 Small": { "T4": [99.88, 1527.73, 18.78], "3090": [55.09, 665.70, 9.25], "A100": [124.91, 1642.07, 13.72], }, "T5 Base": { "T4": [], "3090": [], "A100": [], }, "T5 Large": { "T4": [], "3090": [], "A100": [], }, "T5 3B": { "T4": [], "3090": [], "A100": [], }, }, "Sample": { "DistilGPT2": { "T4": [], "3090": [], "A100": [], }, "GPT2": { "T4": [], "3090": [], "A100": [], }, "OPT-1.3B": { "T4": [], "3090": [], "A100": [], }, "GPTJ-6B": { "T4": [], "3090": [], "A100": [], }, "T5 Small": { "T4": [], "3090": [], "A100": [], }, "T5 Base": { "T4": [], "3090": [], "A100": [], }, "T5 Large": { "T4": [], "3090": [], "A100": [], }, "T5 3B": { "T4": [], "3090": [], "A100": [], }, }, "Beam Search": { "DistilGPT2": { "T4": [], "3090": [], "A100": [], }, "GPT2": { "T4": [], "3090": [], "A100": [], }, "OPT-1.3B": { "T4": [], "3090": [], "A100": [], }, "GPTJ-6B": { "T4": [], "3090": [], "A100": [], }, "T5 Small": { "T4": [], "3090": [], "A100": [], }, "T5 Base": { "T4": [], "3090": [], "A100": [], }, "T5 Large": { "T4": [], "3090": [], "A100": [], }, "T5 3B": { "T4": [], "3090": [], "A100": [], }, }, } def get_plot(model_name, generate_type): df = pd.DataFrame(BENCHMARK_DATA[generate_type][model_name]) df["framework"] = ["PyTorch", "TF (Eager Execition)", "TF (XLA)"] df = pd.melt(df, id_vars=["framework"], value_vars=["T4", "3090", "A100"]) g = sns.catplot( data=df, kind="bar", x="variable", y="value", hue="framework", ci="sd", palette="dark", alpha=.6, height=6 ) g.despine(left=True) # g.set_axis_labels("", "Body mass (g)") # g.legend.set_title("") return g.gcf() demo = gr.Blocks() with demo: with gr.Tabs(): with gr.TabItem("Greedy Search"): model_selector = gr.Dropdown( choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"], value="T5 Small", label="Model", interactive=True, ) plot_fn = functools.partial(get_plot, generate_type="Greedy Search") plot = gr.Plot(value=plot_fn("T5 Small")) # Show plot when the gradio app is initialized model_selector.change(fn=get_plot, inputs=[model_selector], outputs=plot) with gr.TabItem("Sample"): gr.Button("New Tiger") with gr.TabItem("Beam Search"): gr.Button("New Tiger") with gr.TabItem("Benchmark Information"): gr.Dataframe( headers=["Parameter", "Value"], value=[ ["Transformers Version", "4.22.dev0"], ["TensorFlow Version", "2.9.1"], ["Pytorch Version", "1.11.0"], ["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"], ["CUDA", "11.6 (3090) / 11.3 (others GPUs)"], ["Number of runs", "100 (the first run was discarded to ignore compilation time)"], ["Is there code to reproduce?", "Yes -- https://gist.github.com/gante/f0017e3f13ac11b0c02e4e4db351f52f"], ], ) demo.launch()