import gradio as gr import spaces import os import torch from transformers import AutoProcessor, MllamaForConditionalGeneration from PIL import Image, ImageOps import whisper # Hugging Face token hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN") if not hf_token: raise ValueError("HUGGING_FACE_HUB_TOKEN not found.") # Model model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" model = MllamaForConditionalGeneration.from_pretrained( model_name, token=hf_token, torch_dtype=torch.bfloat16, device_map="auto", ) processor = AutoProcessor.from_pretrained(model_name, token=hf_token) @spaces.GPU def predict(image, text): messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text} ]} ] input_text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(image, input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=250) response = processor.decode(outputs[0], skip_special_tokens=True) # Split the response at the first occurrence of "assistant" and return only the part after it response = response.split("assistant", 1)[1].strip() return response # Whisper STT optional model #@spaces.GPU #def transcribe_audio(audio): # result = whisper.transcribe(audio, model="base") # return result["text"] # Example photos and prompts example_images = [ ImageOps.exif_transpose(Image.open("Illustration by @twentyone21___.jpg")), ImageOps.exif_transpose(Image.open("Kynda Coffee.jpg")), ImageOps.exif_transpose(Image.open("Cowboy Hat.jpg")), ImageOps.exif_transpose(Image.open("Norway.JPG")) ] example_prompts = ["Describe the photo", "Search for the business name on his t-shirt to get a description of where the person is in Texas.", "Describe the photo", "Where do you think this photo was taken based on the architecture?" ] # Gradio demo = gr.Blocks() with demo: gr.Markdown("# Image Question Answering and Optional (WIP) Audio Transcription") with gr.Tab("Image & Text Prompt"): image_input = gr.Image(type="pil", label="Image Input") text_input = gr.Textbox(label="Text Input") output = gr.Textbox(label="Output") gr.Button("Submit").click(predict, inputs=[image_input, text_input], outputs=output) gr.Examples(examples=[[image, prompt] for image, prompt in zip(example_images, example_prompts)], inputs=[image_input, text_input]) # with gr.Tab("Audio Transcription (WIP) Prompt"): # gr.load("models/openai/whisper-large-v3") # audio_input = gr.Audio(label="Audio Input") # text_output = gr.Textbox(label="Transcribed Text") # gr.Button("Transcribe").click(transcribe_audio, inputs=audio_input, outputs=text_output) # gr.Button("Submit").click(predict, inputs=[image_input, text_output], outputs=output) demo.launch()