from openai import OpenAI import json_repair from transformers import AutoTokenizer from prompts import * import re from tenacity import retry, wait_fixed, stop_after_attempt, retry_if_exception_type from openai import RateLimitError from difflib import get_close_matches class ChatbotSimulation: def __init__(self, app_name, app_description, site_map, relevant_tables_per_page, database, jinjia_prerender_page, task, solution, log_location, openai_api_key, agent='human', max_steps=30, max_tokens=8192, buffer_tokens=500): self.app_name = app_name self.app_description = app_description self.sitemap = site_map self.relevant_tables_per_page = relevant_tables_per_page self.database = database self.jinjia_prerender_page = jinjia_prerender_page self.task = task self.solution = solution self.user_state = dict() self.user_state['current_page'] = self.sitemap['pages'][0]['id'] # Initialize current page self.user_state['task_completed'] = 'False' self.user_state['logged_in'] = 'False' self.user_state['back'] = 'False' self.log_location = log_location self.agent = agent.lower() if self.agent not in ['human', 'llm']: raise ValueError("Invalid agent type. Expected 'Human' or 'llm'.") self.max_steps = max_steps self.max_tokens = max_tokens self.buffer_tokens = buffer_tokens self.conversation = [] # Stores recent conversation snippets self.trajectory = [{"role": "system", "content": f"Welcome to {app_name} simulator! Your task is: {task}"}] self.prompt_count = 0 self.client = OpenAI(api_key=openai_api_key) self.actions = [] self.tokenizer = AutoTokenizer.from_pretrained("gpt2", clean_up_tokenization_spaces=True) #back button self.page_history = ['Home'] def _get_relevant_data(self, current_page): # Check if the current page exists as a key if current_page in self.relevant_tables_per_page: relevant_tables = self.relevant_tables_per_page[current_page] else: # Find the closest matching key closest_match = get_close_matches(current_page, self.relevant_tables_per_page.keys(), n=1, cutoff=0.5) if closest_match: relevant_tables = self.relevant_tables_per_page[closest_match[0]] else: return self.database return {table: self.database[table] for table in relevant_tables if table in self.database} def _get_prerender_page(self, current_page): if current_page in self.jinjia_prerender_page: return self.jinjia_prerender_page[current_page] else: closest_match = get_close_matches(current_page, self.jinjia_prerender_page.keys(), n=1, cutoff=0) return self.jinjia_prerender_page[closest_match[0]] def _generate_system_prompt(self): """Create a dynamic system prompt based on the current state.""" current_page = self.page_history[-1] if len(self.page_history) >= 1 else self.sitemap['pages'][0]['id'] last_page = self.page_history[-2] if len(self.page_history) > 1 else self.sitemap['pages'][0]['id'] relevant_database = self._get_relevant_data(current_page) relevant_sitemap = next((page for page in self.sitemap["pages"] if page["id"] == current_page), self.sitemap["pages"]) prerender_page = self._get_prerender_page(current_page) return get_system_prompt(app_name=self.app_name, app_description=self.app_description, relevant_database=relevant_database, task=self.task, current_page=current_page, last_page=last_page, actions=self.actions, sitemap_page=relevant_sitemap, jinjia_prerender=prerender_page, ) @retry( retry=retry_if_exception_type(RateLimitError), wait=wait_fixed(5), # Waits for 5 seconds between retries stop=stop_after_attempt(50000) # Stops after 5 failed attempts ) def _get_openai_response(self, prompt): """Fetch response from OpenAI API using tenacity for handling retries.""" self._trim_conversation() response = self.client.chat.completions.create( model="gpt-4", messages=prompt, max_tokens=self.buffer_tokens, # Adjusted max_tokens if needed temperature=0.7, ) return response.choices[0].message.content def _calculate_token_count(self, conversation): """Accurately calculate the token count in the conversation using a tokenizer.""" total_tokens = 0 for entry in conversation: # Tokenize each entry content and count tokens tokens = self.tokenizer.encode(entry['content'], truncation=False, add_special_tokens=False) total_tokens += len(tokens) return total_tokens def _trim_conversation(self): """Trim the conversation to keep it within the token limit.""" while self._calculate_token_count(self.conversation) >= (self.max_tokens - self.buffer_tokens * 2): self.conversation.pop(0) def one_conversation_round(self, user_input): """Conduct one round of conversation between the user and the assistant.""" # User provides input self.trajectory.append({"role": "user", "content": f'Human: {user_input}'}) valid_input = self._is_valid_input(user_input) if valid_input[0]: pass else: self.prompt_count += 1 invalid_input_message = f"\n{self.app_name}: Invalid input. {valid_input[1]}" self.trajectory.append({"role": "assistant", "content": invalid_input_message}) return invalid_input_message self.actions.append(user_input + f'on {self.user_state["current_page"]} page') self.conversation.append({"role": "user", "content": user_input}) self.prompt_count += 1 # Update user state using GPT's response current_page = self.page_history[-1] if len(self.page_history) >= 1 else self.sitemap['pages'][0]['id'] update_prompt = get_user_state_update_prompt(user_input=user_input, current_page=current_page, task=self.task, database=self.database, solution=self.solution, user_state=self.user_state, sitemap=self.sitemap) self.conversation.append({"role": "user", "content": update_prompt}) updated_state = self._get_openai_response(self.conversation).split("UPDATED", 1)[1].strip() self.conversation.pop(-1) # update prompt don't have to stay in conversation history # Parse and update the user state updated_state = json_repair.loads(updated_state) # format forcing of updated state required_keys = {'current_page', 'task_completed', 'back'} # Ensure `updated_state` is a dictionary while not isinstance(updated_state, dict): transform_prompt = f""" Transform {updated_state} to a properly formatted JSON file. Example Output Format: {{ 'current_page': 'Home', 'task_completed': False, 'back': False }} """ updated_state = self._get_openai_response([{"role": "system", "content": transform_prompt}]) updated_state = json_repair.loads(updated_state) # Manually add missing required keys for key in required_keys: if key not in updated_state: if key == 'current_page': updated_state[key] = self.page_history[-1] if len(self.page_history) >= 1 else "Home" else: updated_state[key] = False try: if str(updated_state['task_completed']).lower() == 'true': complete_message = f"{self.app_name}: Task completed! You took {self.prompt_count} steps." self.trajectory.append({"role": "assistant", "content": complete_message}) return complete_message except: updated_state['task_completed'] = 'False' self.user_state = updated_state if str(updated_state['back']).lower() == 'false': self.page_history.append(updated_state['current_page']) elif self.page_history: self.page_history.pop() ## no need to store old system prompt while we get a new one self.conversation = [entry for entry in self.conversation if entry["role"] != "system"] system_prompt = self._generate_system_prompt() # GPT generates the page instructions self.conversation.append({"role": "system", "content": system_prompt}) gpt_instruction = self._get_openai_response(self.conversation) self.conversation.append({"role": "assistant", "content": gpt_instruction}) self.trajectory.append({"role": "assistant", "content": gpt_instruction}) return gpt_instruction def start_conversation(self): greeting = f'\nWelcome to {self.app_name} simulator! Your task is: {self.task} \n' system_prompt = self._generate_system_prompt() # GPT generates the page instructions self.conversation.append({"role": "system", "content": system_prompt}) gpt_instruction = self._get_openai_response(self.conversation) self.conversation.append({"role": "assistant", "content": gpt_instruction}) return greeting + gpt_instruction def _extract_buttons(self): """Extract button numbers and their action types from the latest conversation if role is 'assistant'.""" # Get the last message last_message = self.conversation[-1] # Ensure the role of the last message is 'assistant' if last_message.get("role") != "assistant": return {} # Extract the content of the last message message_content = last_message.get("content", "") # Split the message content to isolate the button section options_split = re.split(r"you have the following options:", message_content, flags=re.IGNORECASE) # If the split doesn't produce at least two parts, return an empty dictionary if len(options_split) < 2: return {} # Extract button definitions from the second part of the split content button_section = options_split[1] pattern = r"(\d+)\.\s+(.*?):\s+([a-zA-Z_]+)" # Capture the number, button name, and action type buttons = re.findall(pattern, button_section) # Construct the dictionary with button numbers as keys and action types as values return {number: action_type.strip().lower() for number, _, action_type in buttons} def _is_valid_input(self, user_input): """Validate user input format.""" valid_buttons = self._extract_buttons() if valid_buttons == {}: return [True, "Enter Anything is empty"] # Validate input format pattern = r"^(?P\w+)\((?P[^,]+)(?:,\s*(?P.+))?\)$" match = re.match(pattern, user_input) if not match: return [False, "Your input doesn't match the format: action_type(button number), OR if text_box, use text_box(button number, query), eg. noop(12). No indent before input and No extra input before or after action_type(button number)!"] # Extract parsed components action_type = match.group("action_type").lower() button_name = match.group("button_number").strip().lower() query = match.group("query") # Optional query for `type` # Validate button number and action type if button_name not in valid_buttons: return [False, "Invalid Button number! Recall: Each button is in the format: `number. button name: action_type`. Correct example: link(3), text_box(2, query)"] # Button number must match exactly (case insensitive) if action_type != valid_buttons[button_name]: return [False, "Invalid action type! Recall: Each button is in the format: `number. button name: action_type`"] # Action type must match the button's specified type if action_type == "text_box" and query is None: return [False, "Missing Query for action type 'text_box'! Recall: use the format: `text_box(button number, query)`"] # `text_box` action requires a query if action_type != "text_box" and query is not None: return [False, "Non-`text_box` action_type cannot take query!"] # Non-`type` actions must not have a query return [True, 'Pass']