App_Simulator / app.py
jjz5463's picture
update app simulator
c634ddd
raw
history blame
3.85 kB
import gradio as gr
from chatbot_simulator import ChatbotSimulation
from task_specific_data_population import DataPopulation
from datasets import load_dataset
import json_repair
import random
openai_api_key = os.getenv("OPENAI_API_KEY")
class AppSimulator:
def __init__(self, openai_api_key):
self.simulation = None
self.openai_api_key = openai_api_key
def initialize_simulator(self, sitemap_url, progress=gr.Progress(track_tqdm=True)):
"""Initialize the simulator with retries and elapsed time tracking."""
synthetic_sitemap = load_dataset(sitemap_url, "sitemap", split='train')
app_name, sitemap, page_details, user_state, system_data = None, None, None, None, None
for row in synthetic_sitemap:
if row['name'] == 'app_name':
app_name = row['value'] # Use `eval` to convert the string to a list
elif row['name'] == 'sitemap':
sitemap = json_repair.loads(row['value'])
elif row['name'] == 'page_details':
page_details = json_repair.loads(row['value'])
elif row['name'] == 'user_state':
user_state = json_repair.loads(row['value'])
elif row['name'] == 'system_data':
system_data = json_repair.loads(row['value'])
synthetic_tasks = load_dataset(sitemap_url, "tasks", split='train')
random_index = random.randint(0, len(synthetic_tasks) - 1) # Generate a random index
random_row = synthetic_tasks[random_index]
task = random_row['tasks']
solution = random_row['steps']
user_data = random_row['attributes']['user_data']
self.simulation = ChatbotSimulation(
app_name=app_name,
site_map=sitemap,
page_details=page_details,
user_state=user_state,
system_data=system_data,
user_data=user_data,
task=task,
solution=solution,
log_location=f'conversation_log_{app_name}.txt',
openai_api_key=openai_api_key,
agent='llm'
)
initial_message = self.simulation.start_conversation()
progress.update("Initialization Successful")
return initial_message # Return the initial assistant message for chat
def chat_interaction(self, user_input, history):
"""Handle one round of conversation."""
return self.simulation.one_conversation_round(user_input)
# Initialize the simulator
simulator_app = AppSimulator(openai_api_key=openai_api_key)
def chat(user_input, history):
"""Chat handler that validates input and interacts with the simulator."""
response = simulator_app.chat_interaction(user_input, history)
return response
# Gradio Interface using ChatInterface
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("## Simulator Setup")
# Input fields for initialization
sitemap_input = gr.Textbox(label="Sitemap", placeholder="Enter the Hugging Face link to sitemap... (eg.jjz5463/DoorDash_synthetic_sitemap)")
initialize_button = gr.Button("Initialize Simulator")
# Status block to display initialization progress with elapsed time
status = gr.Textbox(label="Status", interactive=False)
# Chat interface to handle user interactions
chat_interface = gr.ChatInterface(fn=chat, type='messages')
# Define the callback function to initialize the simulator and update status
def initialize_and_start_chat(sitemap):
return simulator_app.initialize_simulator(sitemap) # Use progress tracking
# Set up the button click to initialize simulator and update status only
initialize_button.click(
fn=initialize_and_start_chat,
inputs=[sitemap_input],
outputs=status # Update only the status block
)
# Launch the app
demo.launch()