import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seq2seq_trainer import Seq2SeqTrainer from seq2seq_training_args import Seq2SeqTrainingArguments from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, set_seed from transformers.trainer_utils import EvaluationStrategy from seq2seq_utils import ( Seq2SeqDataCollator, Seq2SeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."}) freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."}) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ data_dir: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) task: Optional[str] = field( default="summarization", metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) val_max_target_length: Optional[int] = field( default=142, metadata={ "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) test_max_target_length: Optional[int] = field( default=142, metadata={ "help": "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."}) tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."}) eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."}) ignore_pad_token_for_loss: bool = field( default=True, metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() check_output_dir(training_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(training_args, p, None): assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(config, p, getattr(training_args, p)) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=".ckpt" in model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(model, data_args.task) # set num_beams for evaluation if data_args.eval_beams is None: data_args.eval_beams = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(tokenizer, MBartTokenizer): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang] if model_args.freeze_embeds: freeze_embeds(model) if model_args.freeze_encoder: freeze_params(model.get_encoder()) assert_all_frozen(model.get_encoder()) dataset_class = Seq2SeqDataset # Get datasets train_dataset = ( dataset_class( tokenizer, type_path="train", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_train else None ) eval_dataset = ( dataset_class( tokenizer, type_path="val", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) test_dataset = ( dataset_class( tokenizer, type_path="test", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_predict else None ) # Initialize our Trainer compute_metrics_fn = ( build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None ) trainer = Seq2SeqTrainer( model=model, config=config, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=Seq2SeqDataCollator(tokenizer, data_args, training_args.tpu_num_cores), compute_metrics=compute_metrics_fn, data_args=data_args, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) tokenizer.save_pretrained(training_args.output_dir) # Evaluation eval_results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() if trainer.is_world_process_zero(): logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) save_json(result, os.path.join(training_args.output_dir, "eval_results.json")) eval_results.update(result) if training_args.do_predict: logging.info("*** Test ***") test_output = trainer.predict(test_dataset=test_dataset) test_metrics = {k.replace("eval", "test"): v for k, v in test_output.metrics.items()} if trainer.is_world_process_zero(): logger.info("***** Test results *****") for key, value in test_metrics.items(): logger.info(" %s = %s", key, value) save_json(test_metrics, os.path.join(training_args.output_dir, "test_results.json")) eval_results.update(test_metrics) if training_args.predict_with_generate: test_preds = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True ) test_preds = lmap(str.strip, test_preds) write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) if trainer.is_world_process_zero(): save_json(eval_results, "all_results.json") return eval_results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()