from typing import List from langchain.base_language import BaseLanguageModel from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) from langchain.chat_models import ( ChatAnthropic, ChatOpenAI, ChatVertexAI, ChatGooglePalm, ) import vertexai from langchain.input import get_colored_text from langchain.callbacks import get_openai_callback from collections import defaultdict from pydantic import BaseModel import queue import threading import os import random import time import ujson as json import matplotlib.pyplot as plt from .item_base import Item, item_list_equal from .prompt_base import ( AUCTION_HISTORY, # INSTRUCT_OBSERVE_TEMPLATE, _LEARNING_STATEMENT, INSTRUCT_PLAN_TEMPLATE, INSTRUCT_BID_TEMPLATE, INSTRUCT_SUMMARIZE_TEMPLATE, INSTRUCT_LEARNING_TEMPLATE, INSTRUCT_REPLAN_TEMPLATE, SYSTEM_MESSAGE, ) import sys sys.path.append('..') from utils import LoadJsonL, extract_jsons_from_text, extract_numbered_list, trace_back # DESIRE_DESC = { # 'default': "Your goal is to fully utilize your budget while actively participating in the auction", # 'maximize_profit': "Your goal is to maximize your overall profit, and fully utilize your budget while actively participating in the auction. This involves strategic bidding to win items for less than their true value, thereby ensuring the difference between the price paid and the item's value is as large as possible", # 'maximize_items': "Your goal is to win as many items as possible, and fully utilize your budget while actively participating in the auction. While keeping your budget in mind, you should aim to participate broadly across different items, striving to be the highest bidder more often than not", # } # remove period at the end of each description DESIRE_DESC = { 'maximize_profit': "Your primary objective is to secure the highest profit at the end of this auction, compared to all other bidders", 'maximize_items': "Your primary objective is to win the highest number of items at the end of this auction, compared to everyone else", } class Bidder(BaseModel): name: str model_name: str budget: int desire: str plan_strategy: str temperature: float = 0.7 overestimate_percent: int = 10 correct_belief: bool enable_learning: bool = False llm: BaseLanguageModel = None openai_cost = 0 llm_token_count = 0 verbose: bool = False auction_hash: str = '' system_message: str = '' original_budget: int = 0 # working memory profit: int = 0 cur_item_id = 0 items: list = [] dialogue_history: list = [] # for gradio UI display llm_prompt_history: list = [] # for tracking llm calling items_won = [] bid_history: list = [] # history of the bidding of a single item plan_instruct: str = '' # instruction for planning cur_plan: str = '' # current plan status_quo: dict = {} # belief of budget and profit, self and others withdraw: bool = False # state of withdraw learnings: str = '' # learnings from previous biddings. If given, then use it to guide the rest of the auction. max_bid_cnt: int = 4 # Rule Bidder: maximum number of bids on one item (K = 1 starting bid + K-1 increase bid) rule_bid_cnt: int = 0 # Rule Bidder: count of bids on one item # belief tracking failed_bid_cnt: int = 0 # count of failed bids (overspending) total_bid_cnt: int = 0 # count of total bids self_belief_error_cnt: int = 0 total_self_belief_cnt: int = 0 other_belief_error_cnt: int = 0 total_other_belief_cnt: int = 0 engagement_count: int = 0 budget_history = [] profit_history = [] budget_error_history = [] profit_error_history = [] win_bid_error_history = [] engagement_history = defaultdict(int) all_bidders_status = {} # track others' profit changes_of_plan = [] # not used input_box: str = None need_input = False semaphore = 0 class Config: arbitrary_types_allowed = True def __repr__(self): return self.name def __str__(self): return self.name @classmethod def create(cls, **data): instance = cls(**data) instance._post_init() return instance def _post_init(self): self.original_budget = self.budget self.system_message = SYSTEM_MESSAGE.format( name=self.name, desire_desc=DESIRE_DESC[self.desire], ) self._parse_llm() self.dialogue_history += [ SystemMessage(content=self.system_message), AIMessage(content='') ] self.budget_history.append(self.budget) self.profit_history.append(self.profit) def _parse_llm(self): if 'gpt-' in self.model_name: self.llm = ChatOpenAI(model=self.model_name, temperature=self.temperature, max_retries=30, request_timeout=1200) elif 'claude' in self.model_name: self.llm = ChatAnthropic(model=self.model_name, temperature=self.temperature, default_request_timeout=1200) elif 'bison' in self.model_name: self.llm = ChatGooglePalm(model_name=f'models/{self.model_name}', temperature=self.temperature) elif 'rule' in self.model_name or 'human' in self.model_name: self.llm = None else: raise NotImplementedError(self.model_name) # def _rotate_openai_org(self): # # use two organizations to avoid rate limit # if os.environ.get('OPENAI_ORGANIZATION_1') and os.environ.get('OPENAI_ORGANIZATION_2'): # return random.choice([os.environ.get('OPENAI_ORGANIZATION_1'), os.environ.get('OPENAI_ORGANIZATION_2')]) # else: # return None def _run_llm_standalone(self, messages: list): with get_openai_callback() as cb: for i in range(6): try: input_token_num = self.llm.get_num_tokens_from_messages(messages) if 'claude' in self.model_name: # anthropic's claude result = self.llm(messages, max_tokens_to_sample=2048) elif 'bison' in self.model_name: # google's palm-2 max_tokens = min(max(3900 - input_token_num, 192), 2048) if isinstance(self.llm, ChatVertexAI): result = self.llm(messages, max_output_tokens=max_tokens) else: result = self.llm(messages) elif 'gpt' in self.model_name: # openai if 'gpt-3.5-turbo' in self.model_name and '16k' not in self.model_name: max_tokens = max(3900 - input_token_num, 192) else: # gpt-4 # self.llm.openai_organization = self._rotate_openai_org() max_tokens = max(8000 - input_token_num, 192) result = self.llm(messages, max_tokens=max_tokens) elif 'llama' in self.model_name.lower(): raise NotImplementedError else: raise NotImplementedError break except: print(f'Retrying for {self.model_name} ({i+1}/6), wait for {2**(i+1)} sec...') time.sleep(2**(i+1)) self.openai_cost += cb.total_cost self.llm_token_count = self.llm.get_num_tokens_from_messages(messages) return result.content def _get_estimated_value(self, item): value = item.true_value * (1 + self.overestimate_percent / 100) return int(value) def _get_cur_item(self, key=None): if self.cur_item_id < len(self.items): if key is not None: return self.items[self.cur_item_id].__dict__[key] else: return self.items[self.cur_item_id] else: return 'no item left' def _get_next_item(self, key=None): if self.cur_item_id + 1 < len(self.items): if key is not None: return self.items[self.cur_item_id + 1].__dict__[key] else: return self.items[self.cur_item_id + 1] else: return 'no item left' def _get_remaining_items(self, as_str=False): remain_items = self.items[self.cur_item_id + 1:] if as_str: return ', '.join([item.name for item in remain_items]) else: return remain_items def _get_items_value_str(self, items: List[Item]): if not isinstance(items, list): items = [items] items_info = '' for i, item in enumerate(items): estimated_value = self._get_estimated_value(item) _info = f"{i+1}. {item}, starting price is ${item.price}. Your estimated value for this item is ${estimated_value}.\n" items_info += _info return items_info.strip() # ********** Main Instructions and Functions ********** # def learn_from_prev_auction(self, past_learnings, past_auction_log): if not self.enable_learning or 'rule' in self.model_name or 'human' in self.model_name: return '' instruct_learn = INSTRUCT_LEARNING_TEMPLATE.format( past_auction_log=past_auction_log, past_learnings=past_learnings) result = self._run_llm_standalone([HumanMessage(content=instruct_learn)]) self.dialogue_history += [ HumanMessage(content=instruct_learn), AIMessage(content=result), ] self.llm_prompt_history.append({ 'messages': [{x.type: x.content} for x in [HumanMessage(content=instruct_learn)]], 'result': result, 'tag': 'learn_0' }) self.learnings = '\n'.join(extract_numbered_list(result)) if self.learnings != '': self.system_message += f"\n\nHere are your key learning points and practical tips from a previous auction. You can use them to guide this auction:\n```\n{self.learnings}\n```" if self.verbose: print(f"Learn from previous auction: {self.name} ({self.model_name}).") return result def _choose_items(self, budget, items: List[Item]): ''' Choose items within budget for rule bidders. Cheap ones first if maximize_items, expensive ones first if maximize_profit. ''' sorted_items = sorted(items, key=lambda x: self._get_estimated_value(x), reverse=self.desire == 'maximize_profit') chosen_items = [] i = 0 while budget >= 0 and i < len(sorted_items): item = sorted_items[i] if item.price <= budget: chosen_items.append(item) budget -= item.price i += 1 return chosen_items def get_plan_instruct(self, items: List[Item]): self.items = items plan_instruct = INSTRUCT_PLAN_TEMPLATE.format( bidder_name=self.name, budget=self.budget, item_num=len(items), items_info=self._get_items_value_str(items), desire_desc=DESIRE_DESC[self.desire], learning_statement='' if not self.enable_learning else _LEARNING_STATEMENT ) return plan_instruct def init_plan(self, plan_instruct: str): ''' Plan for bidding with auctioneer's instruction and items information for customize estimated value. plan = plan(system_message, instruct_plan) ''' if 'rule' in self.model_name: # self.cur_plan = ', '.join([x.name for x in self._choose_items(self.budget, self.items)]) # self.dialogue_history += [ # HumanMessage(content=plan_instruct), # AIMessage(content=self.cur_plan), # ] # return self.cur_plan return '' self.status_quo = { 'remaining_budget': self.budget, 'total_profits': {bidder: 0 for bidder in self.all_bidders_status.keys()}, 'winning_bids': {bidder: {} for bidder in self.all_bidders_status.keys()}, } if self.plan_strategy == 'none': self.plan_instruct = '' self.cur_plan = '' return None system_msg = SystemMessage(content=self.system_message) plan_msg = HumanMessage(content=plan_instruct) messages = [system_msg, plan_msg] result = self._run_llm_standalone(messages) if self.verbose: print(get_colored_text(plan_msg.content, 'red')) print(get_colored_text(result, 'green')) self.dialogue_history += [ plan_msg, AIMessage(content=result), ] self.llm_prompt_history.append({ 'messages': [{x.type: x.content} for x in messages], 'result': result, 'tag': 'plan_0' }) self.cur_plan = result self.plan_instruct = plan_instruct self.changes_of_plan.append([ f"{self.cur_item_id} (Initial)", False, json.dumps(extract_jsons_from_text(result)[-1]), ]) if self.verbose: print(f"Plan: {self.name} ({self.model_name}) for {self._get_cur_item()}.") return result def get_rebid_instruct(self, auctioneer_msg: str): self.dialogue_history += [ HumanMessage(content=auctioneer_msg), AIMessage(content='') ] return auctioneer_msg def get_bid_instruct(self, auctioneer_msg: str, bid_round: int): auctioneer_msg = auctioneer_msg.replace(self.name, f'You ({self.name})') bid_instruct = INSTRUCT_BID_TEMPLATE.format( auctioneer_msg=auctioneer_msg, bidder_name=self.name, cur_item=self._get_cur_item(), estimated_value=self._get_estimated_value(self._get_cur_item()), desire_desc=DESIRE_DESC[self.desire], learning_statement='' if not self.enable_learning else _LEARNING_STATEMENT ) if bid_round == 0: if self.plan_strategy in ['static', 'none']: # if static planner, then no replanning is needed. status quo is updated in replanning. thus need to add status quo in bid instruct. bid_instruct = f"""The status quo of this auction so far is:\n"{json.dumps(self.status_quo, indent=4)}"\n\n{bid_instruct}\n---\n""" else: bid_instruct = f'Now, the auctioneer says: "{auctioneer_msg}"' self.dialogue_history += [ HumanMessage(content=bid_instruct), AIMessage(content='') ] return bid_instruct def bid_rule(self, cur_bid: int, min_markup_pct: float = 0.1): ''' :param cur_bid: current highest bid :param min_markup_pct: minimum percentage for bid increase :param max_bid_cnt: maximum number of bids on one item (K = 1 starting bid + K-1 increase bid) ''' # dialogue history already got bid_instruction. cur_item = self._get_cur_item() if cur_bid <= 0: next_bid = cur_item.price else: next_bid = cur_bid + min_markup_pct * cur_item.price if self.budget - next_bid >= 0 and self.rule_bid_cnt < self.max_bid_cnt: msg = int(next_bid) self.rule_bid_cnt += 1 else: msg = -1 content = f'The current highest bid for {cur_item.name} is ${cur_bid}. ' content += "I'm out!" if msg < 0 else f"I bid ${msg}! (Rule generated)" self.dialogue_history += [ HumanMessage(content=''), AIMessage(content=content) ] return msg def bid(self, bid_instruct): ''' Bid for an item with auctioneer's instruction and bidding history. bid_history = bid(system_message, instruct_plan, plan, bid_history) ''' if self.model_name == 'rule': return '' bid_msg = HumanMessage(content=bid_instruct) if self.plan_strategy == 'none': messages = [SystemMessage(content=self.system_message)] else: messages = [SystemMessage(content=self.system_message), HumanMessage(content=self.plan_instruct), AIMessage(content=self.cur_plan)] self.bid_history += [bid_msg] messages += self.bid_history result = self._run_llm_standalone(messages) self.bid_history += [AIMessage(content=result)] self.dialogue_history += [ HumanMessage(content=''), AIMessage(content=result) ] self.llm_prompt_history.append({ 'messages': [{x.type: x.content} for x in messages], 'result': result, 'tag': f'bid_{self.cur_item_id}' }) if self.verbose: print(get_colored_text(bid_instruct, 'yellow')) print(get_colored_text(result, 'green')) print(f"Bid: {self.name} ({self.model_name}) for {self._get_cur_item()}.") self.total_bid_cnt += 1 return result def get_summarize_instruct(self, bidding_history: str, hammer_msg: str, win_lose_msg: str): instruct = INSTRUCT_SUMMARIZE_TEMPLATE.format( cur_item=self._get_cur_item(), bidding_history=bidding_history, hammer_msg=hammer_msg.strip(), win_lose_msg=win_lose_msg.strip(), bidder_name=self.name, prev_status=self._status_json_to_text(self.status_quo), ) return instruct def summarize(self, instruct_summarize: str): ''' Update belief/status quo status_quo = summarize(system_message, bid_history, prev_status + instruct_summarize) ''' self.budget_history.append(self.budget) self.profit_history.append(self.profit) if self.model_name == 'rule': self.rule_bid_cnt = 0 # reset bid count for rule bidder return '' messages = [SystemMessage(content=self.system_message)] # messages += self.bid_history summ_msg = HumanMessage(content=instruct_summarize) messages.append(summ_msg) status_quo_text = self._run_llm_standalone(messages) self.dialogue_history += [summ_msg, AIMessage(content=status_quo_text)] self.bid_history += [summ_msg, AIMessage(content=status_quo_text)] self.llm_prompt_history.append({ 'messages': [{x.type: x.content} for x in messages], 'result': status_quo_text, 'tag': f'summarize_{self.cur_item_id}' }) cnt = 0 while cnt <= 3: sanity_msg = self._sanity_check_status_json(extract_jsons_from_text(status_quo_text)[-1]) if sanity_msg == '': # pass sanity check then track beliefs consistency_msg = self._belief_tracking(status_quo_text) else: sanity_msg = f'- {sanity_msg}' consistency_msg = '' if sanity_msg != '' or (consistency_msg != '' and self.correct_belief): err_msg = f"As {self.name}, here are some error(s) of your summary of the status JSON:\n{sanity_msg.strip()}\n{consistency_msg.strip()}\n\nPlease revise the status JSON based on the errors. Don't apologize. Just give me the revised status JSON.".strip() # print(f"{self.name}: revising status quo for the {cnt} time:") # print(get_colored_text(err_msg, 'green')) # print(get_colored_text(status_quo_text, 'red')) messages += [AIMessage(content=status_quo_text), HumanMessage(content=err_msg)] status_quo_text = self._run_llm_standalone(messages) self.dialogue_history += [ HumanMessage(content=err_msg), AIMessage(content=status_quo_text), ] cnt += 1 else: break self.status_quo = extract_jsons_from_text(status_quo_text)[-1] if self.verbose: print(get_colored_text(instruct_summarize, 'blue')) print(get_colored_text(status_quo_text, 'green')) print(f"Summarize: {self.name} ({self.model_name}) for {self._get_cur_item()}.") return status_quo_text def get_replan_instruct(self): instruct = INSTRUCT_REPLAN_TEMPLATE.format( status_quo=self._status_json_to_text(self.status_quo), remaining_items_info=self._get_items_value_str(self._get_remaining_items()), bidder_name=self.name, desire_desc=DESIRE_DESC[self.desire], learning_statement='' if not self.enable_learning else _LEARNING_STATEMENT ) return instruct def replan(self, instruct_replan: str): ''' plan = replan(system_message, instruct_plan, prev_plan, status_quo + (learning) + instruct_replan) ''' if self.model_name == 'rule': self.withdraw = False self.cur_item_id += 1 return '' if self.plan_strategy in ['none', 'static']: self.bid_history = [] # clear bid history self.cur_item_id += 1 self.withdraw = False return 'Skip replanning for bidders with static or no plan.' replan_msg = HumanMessage(content=instruct_replan) messages = [SystemMessage(content=self.system_message), HumanMessage(content=self.plan_instruct), AIMessage(content=self.cur_plan)] messages.append(replan_msg) result = self._run_llm_standalone(messages) new_plan_dict = extract_jsons_from_text(result)[-1] cnt = 0 while len(new_plan_dict) == 0 and cnt < 2: err_msg = 'Your response does not contain a JSON-format priority list for items. Please revise your plan.' messages += [ AIMessage(content=result), HumanMessage(content=err_msg), ] result = self._run_llm_standalone(messages) new_plan_dict = extract_jsons_from_text(result)[-1] self.dialogue_history += [ HumanMessage(content=err_msg), AIMessage(content=result), ] cnt += 1 old_plan_dict = extract_jsons_from_text(self.cur_plan)[-1] self.changes_of_plan.append([ f"{self.cur_item_id + 1} ({self._get_cur_item('name')})", self._change_of_plan(old_plan_dict, new_plan_dict), json.dumps(new_plan_dict) ]) self.plan_instruct = instruct_replan self.cur_plan = result self.withdraw = False self.bid_history = [] # clear bid history self.cur_item_id += 1 self.dialogue_history += [ replan_msg, AIMessage(content=result), ] self.llm_prompt_history.append({ 'messages': [{x.type: x.content} for x in messages], 'result': result, 'tag': f'plan_{self.cur_item_id}' }) if self.verbose: print(get_colored_text(instruct_replan, 'blue')) print(get_colored_text(result, 'green')) print(f"Replan: {self.name} ({self.model_name}).") return result def _change_of_plan(self, old_plan: dict, new_plan: dict): for k in new_plan: if new_plan[k] != old_plan.get(k, None): return True return False # *********** Belief Tracking and Sanity Check *********** # def bid_sanity_check(self, bid_price, prev_round_max_bid, min_markup_pct): # can't bid more than budget or less than previous highest bid if bid_price < 0: msg = None else: min_bid_increase = int(min_markup_pct * self._get_cur_item('price')) if bid_price > self.budget: msg = f"you don't have insufficient budget (${self.budget} left)" elif bid_price < self._get_cur_item('price'): msg = f"your bid is lower than the starting bid (${self._get_cur_item('price')})" elif bid_price < prev_round_max_bid + min_bid_increase: msg = f"you must advance previous highest bid (${prev_round_max_bid}) by at least ${min_bid_increase} ({int(100 * min_markup_pct)}%)." else: msg = None return msg def rebid_for_failure(self, fail_instruct: str): result = self.bid(fail_instruct) self.failed_bid_cnt += 1 return result def _sanity_check_status_json(self, data: dict): if data == {}: return "Error: No parsible JSON in your response. Possibly due to missing a closing curly bracket '}', or unpasible values (e.g., 'profit': 1000 + 400, instead of 'profit': 1400)." # Check if all expected top-level keys are present expected_keys = ["remaining_budget", "total_profits", "winning_bids"] for key in expected_keys: if key not in data: return f"Error: Missing '{key}' field in the status JSON." # Check if "remaining_budget" is a number if not isinstance(data["remaining_budget"], (int, float)): return "Error: 'remaining_budget' should be a number, and only about your remaining budget." # Check if "total_profits" is a dictionary with numbers as values if not isinstance(data["total_profits"], dict): return "Error: 'total_profits' should be a dictionary of every bidder." for bidder, profit in data["total_profits"].items(): if not isinstance(profit, (int, float)): return f"Error: Profit for {bidder} should be a number." # Check if "winning_bids" is a dictionary and that each bidder's entry is a dictionary with numbers if not isinstance(data["winning_bids"], dict): return "Error: 'winning_bids' should be a dictionary." for bidder, bids in data["winning_bids"].items(): if not isinstance(bids, dict): return f"Error: Bids for {bidder} should be a dictionary." for item, amount in bids.items(): if not isinstance(amount, (int, float)): return f"Error: Amount for {item} under {bidder} should be a number." # If everything is fine return "" def _status_json_to_text(self, data: dict): if 'rule' in self.model_name: return '' # Extract and format remaining budget structured_text = f"* Remaining Budget: ${data.get('remaining_budget', 'unknown')}\n\n" # Extract and format total profits for each bidder structured_text += "* Total Profits:\n" if data.get('total_profits'): for bidder, profit in data['total_profits'].items(): structured_text += f" * {bidder}: ${profit}\n" # Extract and list the winning bids for each item by each bidder structured_text += "\n* Winning Bids:\n" if data.get('winning_bids'): for bidder, bids in data['winning_bids'].items(): structured_text += f" * {bidder}:\n" if bids: for item, amount in bids.items(): structured_text += f" * {item}: ${amount}\n" else: structured_text += f" * No winning bids\n" return structured_text.strip() def _belief_tracking(self, status_text: str): ''' Parse status quo and check if the belief is correct. ''' belief_json = extract_jsons_from_text(status_text)[-1] # {"remaining_budget": 8000, "total_profits": {"Bidder 1": 1300, "Bidder 2": 1800, "Bidder 3": 0}, "winning_bids": {"Bidder 1": {"Item 2": 1200, "Item 3": 1000}, "Bidder 2": {"Item 1": 2000}, "Bidder 3": {}}} budget_belief = belief_json['remaining_budget'] profits_belief = belief_json['total_profits'] winning_bids = belief_json['winning_bids'] msg = '' # track belief of budget self.total_self_belief_cnt += 1 if budget_belief != self.budget: msg += f'- Your belief of budget is wrong: you have ${self.budget} left, but you think you have ${budget_belief} left.\n' self.self_belief_error_cnt += 1 self.budget_error_history.append([ self._get_cur_item('name'), budget_belief, self.budget, ]) # track belief of profits for bidder_name, profit in profits_belief.items(): if self.all_bidders_status.get(bidder_name) is None: # due to a potentially unreasonable parsing continue if self.name in bidder_name: bidder_name = self.name self.total_self_belief_cnt += 1 else: self.total_other_belief_cnt += 1 real_profit = self.all_bidders_status[bidder_name]['profit'] if profit != real_profit: if self.name == bidder_name: self.self_belief_error_cnt += 1 else: self.other_belief_error_cnt += 1 msg += f'- Your belief of total profit of {bidder_name} is wrong: {bidder_name} has earned ${real_profit} so far, but you think {bidder_name} has earned ${profit}.\n' # add to history self.profit_error_history.append([ f"{bidder_name} ({self._get_cur_item('name')})", profit, real_profit ]) # track belief of winning bids for bidder_name, items_won_dict in winning_bids.items(): if self.all_bidders_status.get(bidder_name) is None: # due to a potentially unreasonable parsing continue real_items_won = self.all_bidders_status[bidder_name]['items_won'] # items_won = [(item, bid_price), ...)] items_won_list = list(items_won_dict.keys()) real_items_won_list = [str(x) for x, _ in real_items_won] if self.name in bidder_name: self.total_self_belief_cnt += 1 else: self.total_other_belief_cnt += 1 if not item_list_equal(items_won_list, real_items_won_list): if bidder_name == self.name: self.self_belief_error_cnt += 1 _bidder_name = f'you' else: self.other_belief_error_cnt += 1 _bidder_name = bidder_name msg += f"- Your belief of winning items of {bidder_name} is wrong: {bidder_name} won {real_items_won}, but you think {bidder_name} won {items_won_dict}.\n" self.win_bid_error_history.append([ f"{_bidder_name} ({self._get_cur_item('name')})", ', '.join(items_won_list), ', '.join(real_items_won_list) ]) return msg def win_bid(self, item: Item, bid: int): self.budget -= bid self.profit += item.true_value - bid self.items_won += [[item, bid]] msg = f"Congratuations! You won {item} at ${bid}."# Now you have ${self.budget} left. Your total profit so far is ${self.profit}." return msg def lose_bid(self, item: Item): return f"You lost {item}."# Now, you have ${self.budget} left. Your total profit so far is ${self.profit}." # set the profit information of other bidders def set_all_bidders_status(self, all_bidders_status: dict): self.all_bidders_status = all_bidders_status.copy() def set_withdraw(self, bid: int): if bid < 0: # withdraw self.withdraw = True elif bid == 0: # enable discount and bid again self.withdraw = False else: # normal bid self.withdraw = False self.engagement_count += 1 self.engagement_history[self._get_cur_item('name')] += 1 # ****************** Logging ****************** # # def _parse_hedging(self, plan: str): # deprecated # prompt = PARSE_HEDGE_INSTRUCTION.format( # item_name=self._get_cur_item(), # plan=plan) # with get_openai_callback() as cb: # llm = ChatOpenAI(model='gpt-3.5-turbo-0613', temperature=0) # result = llm([HumanMessage(content=prompt)]).content # self.openai_cost += cb.total_cost # # parse a number, which could be a digit # hedge_percent = re.findall(r'\d+\.?\d*%', result) # if len(hedge_percent) > 0: # hedge_percent = hedge_percent[0].replace('%', '') # else: # hedge_percent = 0 # return float(hedge_percent) def profit_report(self): ''' Personal profit report at the end of an auction. ''' msg = f"* {self.name}, starting with ${self.original_budget}, has won {len(self.items_won)} items in this auction, with a total profit of ${self.profit}.:\n" profit = 0 for item, bid in self.items_won: profit += item.true_value - bid msg += f" * Won {item} at ${bid} over ${item.price}, with a true value of ${item.true_value}.\n" return msg.strip() def to_monitors(self, as_json=False): # budget, profit, items_won, tokens if len(self.items_won) == 0 and not as_json: items_won = [['', 0, 0]] else: items_won = [] for item, bid in self.items_won: items_won.append([str(item), bid, item.true_value]) profit_error_history = self.profit_error_history if self.profit_error_history != [] or as_json else [['', '', '']] win_bid_error_history = self.win_bid_error_history if self.win_bid_error_history != [] or as_json else [['', '', '']] budget_error_history = self.budget_error_history if self.budget_error_history != [] or as_json else [['', '']] changes_of_plan = self.changes_of_plan if self.changes_of_plan != [] or as_json else [['', '', '']] if as_json: return { 'auction_hash': self.auction_hash, 'bidder_name': self.name, 'model_name': self.model_name, 'desire': self.desire, 'plan_strategy': self.plan_strategy, 'overestimate_percent': self.overestimate_percent, 'temperature': self.temperature, 'correct_belief': self.correct_belief, 'enable_learning': self.enable_learning, 'budget': self.original_budget, 'money_left': self.budget, 'profit': self.profit, 'items_won': items_won, 'tokens_used': self.llm_token_count, 'openai_cost': round(self.openai_cost, 2), 'failed_bid_cnt': self.failed_bid_cnt, 'self_belief_error_cnt': self.self_belief_error_cnt, 'other_belief_error_cnt': self.other_belief_error_cnt, 'failed_bid_rate': round(self.failed_bid_cnt / (self.total_bid_cnt+1e-8), 2), 'self_error_rate': round(self.self_belief_error_cnt / (self.total_self_belief_cnt+1e-8), 2), 'other_error_rate': round(self.other_belief_error_cnt / (self.total_other_belief_cnt+1e-8), 2), 'engagement_count': self.engagement_count, 'engagement_history': self.engagement_history, 'changes_of_plan': changes_of_plan, 'budget_error_history': budget_error_history, 'profit_error_history': profit_error_history, 'win_bid_error_history': win_bid_error_history, 'history': self.llm_prompt_history } else: return [ self.budget, self.profit, items_won, self.llm_token_count, round(self.openai_cost, 2), round(self.failed_bid_cnt / (self.total_bid_cnt+1e-8), 2), round(self.self_belief_error_cnt / (self.total_self_belief_cnt+1e-8), 2), round(self.other_belief_error_cnt / (self.total_other_belief_cnt+1e-8), 2), self.engagement_count, draw_plot(f"{self.name} ({self.model_name})", self.budget_history, self.profit_history), changes_of_plan, budget_error_history, profit_error_history, win_bid_error_history ] def dialogue_to_chatbot(self): # chatbot: [[Human, AI], [], ...] # only dialogue will be sent to LLMs. chatbot is just for display. assert len(self.dialogue_history) % 2 == 0 chatbot = [] for i in range(0, len(self.dialogue_history), 2): # if exceeds the length of dialogue, append the last message human_msg = self.dialogue_history[i].content ai_msg = self.dialogue_history[i+1].content if ai_msg == '': ai_msg = None if human_msg == '': human_msg = None chatbot.append([human_msg, ai_msg]) return chatbot def draw_plot(title, hedge_list, profit_list): x1 = [str(i) for i in range(len(hedge_list))] x2 = [str(i) for i in range(len(profit_list))] y1 = hedge_list y2 = profit_list fig, ax1 = plt.subplots() color = 'tab:red' ax1.set_xlabel('Bidding Round') ax1.set_ylabel('Budget Left ($)', color=color) ax1.plot(x1, y1, color=color, marker='o') ax1.tick_params(axis='y', labelcolor=color) for i, j in zip(x1, y1): ax1.text(i, j, str(j), color=color) ax2 = ax1.twinx() color = 'tab:blue' ax2.set_ylabel('Total Profit ($)', color=color) ax2.plot(x2, y2, color=color, marker='^') ax2.tick_params(axis='y', labelcolor=color) for i, j in zip(x2, y2): ax2.text(i, j, str(j), color=color) lines1, labels1 = ax1.get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax2.legend(lines1 + lines2, labels1 + labels2, loc=0) # fig.tight_layout() plt.title(title) return fig def bidding_multithread(bidder_list: List[Bidder], instruction_list, func_type, thread_num=5, retry=1): ''' auctioneer_msg: either a uniform message (str) or customed (list) ''' assert func_type in ['plan', 'bid', 'summarize', 'replan'] result_queue = queue.Queue() threads = [] semaphore = threading.Semaphore(thread_num) def run_once(i: int, bidder: Bidder, auctioneer_msg: str): try: semaphore.acquire() if func_type == 'bid': result = bidder.bid(auctioneer_msg) elif func_type == 'summarize': result = bidder.summarize(auctioneer_msg) elif func_type == 'plan': result = bidder.init_plan(auctioneer_msg) elif func_type == 'replan': result = bidder.replan(auctioneer_msg) else: raise NotImplementedError(f'func_type {func_type} not implemented') result_queue.put((True, i, result)) # except Exception as e: # result_queue.put((False, i, str(trace_back(e)))) finally: semaphore.release() if isinstance(instruction_list, str): instruction_list = [instruction_list] * len(bidder_list) for i, (bidder, msg) in enumerate(zip(bidder_list, instruction_list)): thread = threading.Thread(target=run_once, args=(i, bidder, msg)) thread.start() threads.append(thread) for thread in threads: thread.join(timeout=600) results = [result_queue.get() for _ in range(len(bidder_list))] errors = [] for success, id, result in results: if not success: errors.append((id, result)) if errors: raise Exception(f"Error(s) in {func_type}:\n" + '\n'.join([f'{i}: {e}' for i, e in errors])) valid_results = [x[1:] for x in results if x[0]] valid_results.sort() return [x for _, x in valid_results] def bidders_to_chatbots(bidder_list: List[Bidder], profit_report=False): if profit_report: # usually at the end of an auction return [x.dialogue_to_chatbot() + [[x.profit_report(), None]] for x in bidder_list] else: return [x.dialogue_to_chatbot() for x in bidder_list] def create_bidders(bidder_info_jsl, auction_hash): bidder_info_jsl = LoadJsonL(bidder_info_jsl) bidder_list = [] for info in bidder_info_jsl: info['auction_hash'] = auction_hash bidder_list.append(Bidder.create(**info)) return bidder_list