jhtonyKoo commited on
Commit
d9dc8e5
·
verified ·
1 Parent(s): 471272a

Update inference/style_transfer.py

Browse files
Files changed (1) hide show
  1. inference/style_transfer.py +387 -163
inference/style_transfer.py CHANGED
@@ -1,179 +1,403 @@
1
- import os
2
- import binascii
3
- import warnings
4
-
5
- import json
6
- import argparse
7
- import copy
8
-
 
 
 
 
9
  import numpy as np
10
- import matplotlib.pyplot as plt
 
11
  import torch
12
- import tqdm
 
 
 
 
 
13
  import librosa
14
- import soundfile as sf
15
- import gradio as gr
16
- import pytube as pt
17
 
18
- from pytube.exceptions import VideoUnavailable
19
 
20
- from inference.style_transfer import *
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- yt_video_dir = f"./yt_dir/0"
24
- os.makedirs(yt_video_dir, exist_ok=True)
 
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
- def get_audio_from_yt_video_input(yt_link: str, start_point_in_second=0, duration_in_second=30):
28
- try:
29
- yt = pt.YouTube(yt_link)
30
- t = yt.streams.filter(only_audio=True)
31
- filename_in = os.path.join(yt_video_dir, "input.wav")
32
- t[0].download(filename=filename_in)
33
- except VideoUnavailable as e:
34
- warnings.warn(f"Video Not Found at {yt_link} ({e})")
35
- filename_in = None
36
 
37
- # trim audio length - due to computation time on HuggingFace environment
38
- trim_audio(target_file_path=filename_in, start_point_in_second=start_point_in_second, duration_in_second=duration_in_second)
39
-
40
- return filename_in, filename_in
41
-
42
- def get_audio_from_yt_video_ref(yt_link: str, start_point_in_second=0, duration_in_second=30):
43
- try:
44
- yt = pt.YouTube(yt_link)
45
- t = yt.streams.filter(only_audio=True)
46
- filename_ref = os.path.join(yt_video_dir, "reference.wav")
47
- t[0].download(filename=filename_ref)
48
- except VideoUnavailable as e:
49
- warnings.warn(f"Video Not Found at {yt_link} ({e})")
50
- filename_ref = None
51
-
52
- # trim audio length - due to computation time on HuggingFace environment
53
- trim_audio(target_file_path=filename_ref, start_point_in_second=start_point_in_second, duration_in_second=duration_in_second)
54
-
55
- return filename_ref, filename_ref
56
 
57
- def inference(file_uploaded_in, file_uploaded_ref):
58
- # clear out previously separated results
59
- os.system(f"rm -r {yt_video_dir}/separated")
60
- # change file path name
61
- # os.system(f"cp {file_uploaded_in} {yt_video_dir}/input.wav")
62
- # os.system(f"cp {file_uploaded_ref} {yt_video_dir}/reference.wav")
63
 
64
- sample_rate, data = file_uploaded_in
65
- sf.write(f"{yt_video_dir}/input.wav", data, sample_rate)
66
- sample_rate, data = file_uploaded_ref
67
- sf.write(f"{yt_video_dir}/reference.wav", data, sample_rate)
68
 
69
-
70
- # Perform music mixing style transfer
71
- args = set_up()
72
-
73
- inference_style_transfer = Mixing_Style_Transfer_Inference(args)
74
- # output_wav_path, fin_data_out_mix = inference_style_transfer.inference(file_uploaded_in, file_uploaded_ref)
75
- output_wav_path, fin_data_out_mix = inference_style_transfer.inference(f"{yt_video_dir}/input.wav", f"{yt_video_dir}/reference.wav")
76
- print(fin_data_out_mix.shape)
77
- return (44100, fin_data_out_mix.transpose())
78
-
79
-
80
-
81
- with gr.Blocks() as demo:
82
- gr.HTML(
83
- """
84
- <div style="text-align: center; max-width: 700px; margin: 0 auto;">
85
- <div
86
- style="
87
- display: inline-flex;
88
- align-items: center;
89
- gap: 0.8rem;
90
- font-size: 1.75rem;
91
- "
92
- >
93
- <h1 style="font-weight: 900; margin-bottom: 7px;">
94
- Music Mixing Style Transfer
95
- </h1>
96
- </div>
97
- """
98
- )
99
- gr.Markdown(
100
- """
101
- This page is a Hugging Face interactive demo of the paper ["Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"](https://huggingface.co/papers/2211.02247) (ICASSP 2023).
102
- - [project page](https://jhtonykoo.github.io/MixingStyleTransfer/)
103
- - [GitHub](https://github.com/jhtonyKoo/music_mixing_style_transfer)
104
- - [supplementary](https://pale-cicada-946.notion.site/Music-Mixing-Style-Transfer-A-Contrastive-Learning-Approach-to-Disentangle-Audio-Effects-Supplemen-e6eccd9a431a4a8fa4fdd5adb2d3f219)
105
- """
106
- )
107
- with gr.Group():
108
- with gr.Column():
109
- with gr.Blocks():
110
- with gr.Tab("Input Music"):
111
- file_uploaded_in = gr.Audio(label="Input track (mix) to be mixing style transferred")
112
- with gr.Tab("YouTube url"):
113
- with gr.Row():
114
- yt_link_in = gr.Textbox(
115
- label="Enter YouTube Link of the Video", autofocus=True, lines=3
116
- )
117
- yt_in_start_sec = gr.Number(
118
- value=0,
119
- label="starting point of the song (in seconds)"
120
- )
121
- yt_in_duration_sec = gr.Number(
122
- value=30,
123
- label="duration of the song (in seconds)"
124
- )
125
- yt_btn_in = gr.Button("Download Audio from YouTube Link", size="lg")
126
- yt_audio_path_in = gr.Audio(
127
- label="Input Audio Extracted from the YouTube Video", interactive=False
128
- )
129
- yt_btn_in.click(
130
- get_audio_from_yt_video_input,
131
- inputs=[yt_link_in, yt_in_start_sec, yt_in_duration_sec],
132
- outputs=[yt_audio_path_in, file_uploaded_in],
133
- )
134
- with gr.Blocks():
135
- with gr.Tab("Reference Music"):
136
- file_uploaded_ref = gr.Audio(label="Reference track (mix) to copy mixing style")
137
- with gr.Tab("YouTube url"):
138
- with gr.Row():
139
- yt_link_ref = gr.Textbox(
140
- label="Enter YouTube Link of the Video", autofocus=True, lines=3
141
- )
142
- yt_ref_start_sec = gr.Number(
143
- value=0,
144
- label="starting point of the song (in seconds)"
145
- )
146
- yt_ref_duration_sec = gr.Number(
147
- value=30,
148
- label="duration of the song (in seconds)"
149
- )
150
- yt_btn_ref = gr.Button("Download Audio from YouTube Link", size="lg")
151
- yt_audio_path_ref = gr.Audio(
152
- label="Reference Audio Extracted from the YouTube Video", interactive=False
153
- )
154
- yt_btn_ref.click(
155
- get_audio_from_yt_video_ref,
156
- inputs=[yt_link_ref, yt_ref_start_sec, yt_ref_duration_sec],
157
- outputs=[yt_audio_path_ref, file_uploaded_ref],
158
- )
159
-
160
- with gr.Group():
161
- gr.HTML(
162
- """
163
- <div> <h3> <center> Mixing Style Transfer. Perform stem-wise audio-effects style conversion by first source separating the input mix. The inference computation time takes longer as the input samples' duration. so plz be patient... </h3> </div>
164
- """
165
- )
166
- with gr.Column():
167
- inference_btn = gr.Button("Run Mixing Style Transfer")
168
- with gr.Row():
169
- output_mix = gr.Audio(label="mixing style transferred music track", type='numpy')
170
- inference_btn.click(
171
- inference,
172
- inputs=[file_uploaded_in, file_uploaded_ref],
173
- outputs=[output_mix],
174
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
 
 
 
 
 
 
 
 
 
 
 
 
 
176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
 
178
- if __name__ == "__main__":
179
- demo.launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Inference code of music style transfer
3
+ of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"
4
+ Process : converts the mixing style of the input music recording to that of the refernce music.
5
+ files inside the target directory should be organized as follow
6
+ "path_to_data_directory"/"song_name_#1"/input.wav
7
+ "path_to_data_directory"/"song_name_#1"/reference.wav
8
+ ...
9
+ "path_to_data_directory"/"song_name_#n"/input.wav
10
+ "path_to_data_directory"/"song_name_#n"/reference.wav
11
+ where the 'input' and 'reference' should share the same names.
12
+ """
13
  import numpy as np
14
+ from glob import glob
15
+ import os
16
  import torch
17
+
18
+ import sys
19
+ currentdir = os.path.dirname(os.path.realpath(__file__))
20
+ sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer"))
21
+ from networks import FXencoder, TCNModel
22
+ from data_loader import *
23
  import librosa
24
+ import pyloudnorm
 
 
25
 
 
26
 
 
27
 
28
+ class Mixing_Style_Transfer_Inference:
29
+ def __init__(self, args, trained_w_ddp=True):
30
+ if torch.cuda.is_available():
31
+ self.device = torch.device("cuda:0")
32
+ else:
33
+ self.device = torch.device("cpu")
34
+ print(f"using device: {self.device} for inference")
35
+
36
+ # inference computational hyperparameters
37
+ self.args = args
38
+ self.segment_length = args.segment_length
39
+ self.batch_size = args.batch_size
40
+ self.sample_rate = 44100 # sampling rate should be 44100
41
+ self.time_in_seconds = int(args.segment_length // self.sample_rate)
42
 
43
+ # directory configuration
44
+ self.output_dir = args.target_dir if args.output_dir==None else args.output_dir
45
+ self.target_dir = args.target_dir
46
 
47
+ # load model and its checkpoint weights
48
+ self.models = {}
49
+ self.models['effects_encoder'] = FXencoder(args.cfg_encoder).to(self.device)
50
+ self.models['mixing_converter'] = TCNModel(nparams=args.cfg_converter["condition_dimension"], \
51
+ ninputs=2, \
52
+ noutputs=2, \
53
+ nblocks=args.cfg_converter["nblocks"], \
54
+ dilation_growth=args.cfg_converter["dilation_growth"], \
55
+ kernel_size=args.cfg_converter["kernel_size"], \
56
+ channel_width=args.cfg_converter["channel_width"], \
57
+ stack_size=args.cfg_converter["stack_size"], \
58
+ cond_dim=args.cfg_converter["condition_dimension"], \
59
+ causal=args.cfg_converter["causal"]).to(self.device)
60
+
61
+ ckpt_paths = {'effects_encoder' : args.ckpt_path_enc, \
62
+ 'mixing_converter' : args.ckpt_path_conv}
63
+ # reload saved model weights
64
+ ddp = trained_w_ddp
65
+ self.reload_weights(ckpt_paths, ddp=ddp)
66
 
67
+ # load data loader for the inference procedure
68
+ inference_dataset = Song_Dataset_Inference(args)
69
+ self.data_loader = DataLoader(inference_dataset, \
70
+ batch_size=1, \
71
+ shuffle=False, \
72
+ num_workers=args.workers, \
73
+ drop_last=False)
 
 
74
 
75
+ ''' check stem-wise result '''
76
+ if not self.args.do_not_separate:
77
+ os.environ['MKL_THREADING_LAYER'] = 'GNU'
78
+ separate_file_names = [args.input_file_name, args.reference_file_name]
79
+ if self.args.interpolation:
80
+ separate_file_names.append(args.reference_file_name_2interpolate)
81
+ for cur_idx, cur_inf_dir in enumerate(sorted(glob(f"{args.target_dir}*/"))):
82
+ for cur_file_name in separate_file_names:
83
+ cur_sep_file_path = os.path.join(cur_inf_dir, cur_file_name+'.wav')
84
+ cur_sep_output_dir = os.path.join(cur_inf_dir, args.stem_level_directory_name)
85
+ if os.path.exists(os.path.join(cur_sep_output_dir, self.args.separation_model, cur_file_name, 'drums.wav')):
86
+ print(f'\talready separated current file : {cur_sep_file_path}')
87
+ else:
88
+ cur_cmd_line = f"demucs {cur_sep_file_path} -n {self.args.separation_model} -d {self.device} -o {cur_sep_output_dir}"
89
+ os.system(cur_cmd_line)
 
 
 
 
90
 
 
 
 
 
 
 
91
 
92
+ # reload model weights from the target checkpoint path
93
+ def reload_weights(self, ckpt_paths, ddp=True):
94
+ for cur_model_name in self.models.keys():
95
+ checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device)
96
 
97
+ from collections import OrderedDict
98
+ new_state_dict = OrderedDict()
99
+ for k, v in checkpoint["model"].items():
100
+ # remove `module.` if the model was trained with DDP
101
+ name = k[7:] if ddp else k
102
+ new_state_dict[name] = v
103
+
104
+ # load params
105
+ self.models[cur_model_name].load_state_dict(new_state_dict)
106
+
107
+ print(f"---reloaded checkpoint weights : {cur_model_name} ---")
108
+
109
+
110
+ # Inference whole song
111
+ def inference(self, input_track_path, reference_track_path):
112
+ print("\n======= Start to inference music mixing style transfer =======")
113
+ # normalized input
114
+ output_name_tag = 'output' if self.args.normalize_input else 'output_notnormed'
115
+
116
+ for step, (input_stems, reference_stems, dir_name) in enumerate(self.data_loader):
117
+ print(f"---inference file name : {dir_name[0]}---")
118
+ cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
119
+ os.makedirs(cur_out_dir, exist_ok=True)
120
+ ''' stem-level inference '''
121
+ inst_outputs = []
122
+ for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
123
+ print(f'\t{cur_inst_name}...')
124
+ ''' segmentize whole songs into batch '''
125
+ if len(input_stems[0][cur_inst_idx][0]) > self.args.segment_length:
126
+ cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
127
+ dir_name[0], \
128
+ segment_length=self.args.segment_length, \
129
+ discard_last=False)
130
+ else:
131
+ cur_inst_input_stem = [input_stems[:, cur_inst_idx]]
132
+ if len(reference_stems[0][cur_inst_idx][0]) > self.args.segment_length*2:
133
+ cur_inst_reference_stem = self.batchwise_segmentization(reference_stems[0][cur_inst_idx], \
134
+ dir_name[0], \
135
+ segment_length=self.args.segment_length_ref, \
136
+ discard_last=False)
137
+ else:
138
+ cur_inst_reference_stem = [reference_stems[:, cur_inst_idx]]
139
+
140
+ ''' inference '''
141
+ # first extract reference style embedding
142
+ infered_ref_data_list = []
143
+ for cur_ref_data in cur_inst_reference_stem:
144
+ cur_ref_data = cur_ref_data.to(self.device)
145
+ # Effects Encoder inference
146
+ with torch.no_grad():
147
+ self.models["effects_encoder"].eval()
148
+ reference_feature = self.models["effects_encoder"](cur_ref_data)
149
+ infered_ref_data_list.append(reference_feature)
150
+ # compute average value from the extracted exbeddings
151
+ infered_ref_data = torch.stack(infered_ref_data_list)
152
+ infered_ref_data_avg = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
153
+
154
+ # mixing style converter
155
+ infered_data_list = []
156
+ for cur_data in cur_inst_input_stem:
157
+ cur_data = cur_data.to(self.device)
158
+ with torch.no_grad():
159
+ self.models["mixing_converter"].eval()
160
+ infered_data = self.models["mixing_converter"](cur_data, infered_ref_data_avg.unsqueeze(0))
161
+ infered_data_list.append(infered_data.cpu().detach())
162
+
163
+ # combine back to whole song
164
+ for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
165
+ cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
166
+ fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
167
+ # final output of current instrument
168
+ fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
169
+
170
+ inst_outputs.append(fin_data_out_inst)
171
+ # save output of each instrument
172
+ if self.args.save_each_inst:
173
+ sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
174
+
175
+ # remix
176
+ fin_data_out_mix = sum(inst_outputs)
177
+
178
+ # loudness adjusting for mastering purpose
179
+ if self.args.match_output_loudness:
180
+ meter = pyloudnorm.Meter(44100)
181
+ loudness_out = meter.integrated_loudness(fin_data_out_mix.transpose(-1, -2))
182
+ reference_aud = load_wav_segment(reference_track_path, axis=1)
183
+ loudness_ref = meter.integrated_loudness(reference_aud)
184
+ # adjust output loudness to that of the reference
185
+ fin_data_out_mix = pyloudnorm.normalize.loudness(fin_data_out_mix, loudness_out, loudness_ref)
186
+ fin_data_out_mix = np.clip(fin_data_out_mix, -1., 1.)
187
+
188
+ # save output
189
+ fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav")
190
+ sf.write(fin_output_path, fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
191
+
192
+ return fin_output_path, fin_data_out_mix
193
+
194
+
195
+ # Inference whole song
196
+ def inference_interpolation(self, ):
197
+ print("\n======= Start to inference interpolation examples =======")
198
+ # normalized input
199
+ output_name_tag = 'output_interpolation' if self.args.normalize_input else 'output_notnormed_interpolation'
200
+
201
+ for step, (input_stems, reference_stems_A, reference_stems_B, dir_name) in enumerate(self.data_loader):
202
+ print(f"---inference file name : {dir_name[0]}---")
203
+ cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
204
+ os.makedirs(cur_out_dir, exist_ok=True)
205
+ ''' stem-level inference '''
206
+ inst_outputs = []
207
+ for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
208
+ print(f'\t{cur_inst_name}...')
209
+ ''' segmentize whole song '''
210
+ # segmentize input according to number of interpolating segments
211
+ interpolate_segment_length = input_stems[0][cur_inst_idx].shape[1] // self.args.interpolate_segments + 1
212
+ cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
213
+ dir_name[0], \
214
+ segment_length=interpolate_segment_length, \
215
+ discard_last=False)
216
+ # batchwise segmentize 2 reference tracks
217
+ if len(reference_stems_A[0][cur_inst_idx][0]) > self.args.segment_length_ref:
218
+ cur_inst_reference_stem_A = self.batchwise_segmentization(reference_stems_A[0][cur_inst_idx], \
219
+ dir_name[0], \
220
+ segment_length=self.args.segment_length_ref, \
221
+ discard_last=False)
222
+ else:
223
+ cur_inst_reference_stem_A = [reference_stems_A[:, cur_inst_idx]]
224
+ if len(reference_stems_B[0][cur_inst_idx][0]) > self.args.segment_length_ref:
225
+ cur_inst_reference_stem_B = self.batchwise_segmentization(reference_stems_B[0][cur_inst_idx], \
226
+ dir_name[0], \
227
+ segment_length=self.args.segment_length, \
228
+ discard_last=False)
229
+ else:
230
+ cur_inst_reference_stem_B = [reference_stems_B[:, cur_inst_idx]]
231
+
232
+ ''' inference '''
233
+ # first extract reference style embeddings
234
+ # reference A
235
+ infered_ref_data_list = []
236
+ for cur_ref_data in cur_inst_reference_stem_A:
237
+ cur_ref_data = cur_ref_data.to(self.device)
238
+ # Effects Encoder inference
239
+ with torch.no_grad():
240
+ self.models["effects_encoder"].eval()
241
+ reference_feature = self.models["effects_encoder"](cur_ref_data)
242
+ infered_ref_data_list.append(reference_feature)
243
+ # compute average value from the extracted exbeddings
244
+ infered_ref_data = torch.stack(infered_ref_data_list)
245
+ infered_ref_data_avg_A = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
246
 
247
+ # reference B
248
+ infered_ref_data_list = []
249
+ for cur_ref_data in cur_inst_reference_stem_B:
250
+ cur_ref_data = cur_ref_data.to(self.device)
251
+ # Effects Encoder inference
252
+ with torch.no_grad():
253
+ self.models["effects_encoder"].eval()
254
+ reference_feature = self.models["effects_encoder"](cur_ref_data)
255
+ infered_ref_data_list.append(reference_feature)
256
+ # compute average value from the extracted exbeddings
257
+ infered_ref_data = torch.stack(infered_ref_data_list)
258
+ infered_ref_data_avg_B = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
259
 
260
+ # mixing style converter
261
+ infered_data_list = []
262
+ for cur_idx, cur_data in enumerate(cur_inst_input_stem):
263
+ cur_data = cur_data.to(self.device)
264
+ # perform linear interpolation on embedding space
265
+ cur_weight = (self.args.interpolate_segments-1-cur_idx) / (self.args.interpolate_segments-1)
266
+ cur_ref_emb = cur_weight * infered_ref_data_avg_A + (1-cur_weight) * infered_ref_data_avg_B
267
+ with torch.no_grad():
268
+ self.models["mixing_converter"].eval()
269
+ infered_data = self.models["mixing_converter"](cur_data, cur_ref_emb.unsqueeze(0))
270
+ infered_data_list.append(infered_data.cpu().detach())
271
+
272
+ # combine back to whole song
273
+ for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
274
+ cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
275
+ fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
276
+ # final output of current instrument
277
+ fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
278
+ inst_outputs.append(fin_data_out_inst)
279
+
280
+ # save output of each instrument
281
+ if self.args.save_each_inst:
282
+ sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
283
+ # remix
284
+ fin_data_out_mix = sum(inst_outputs)
285
+ fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav")
286
+ sf.write(fin_output_path, fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
287
+
288
+ return fin_output_path
289
+
290
+
291
+ # function that segmentize an entire song into batch
292
+ def batchwise_segmentization(self, target_song, song_name, segment_length, discard_last=False):
293
+ assert target_song.shape[-1] >= self.args.segment_length, \
294
+ f"Error : Insufficient duration!\n\t \
295
+ Target song's length is shorter than segment length.\n\t \
296
+ Song name : {song_name}\n\t \
297
+ Consider changing the 'segment_length' or song with sufficient duration"
298
+
299
+ # discard restovers (last segment)
300
+ if discard_last:
301
+ target_length = target_song.shape[-1] - target_song.shape[-1] % segment_length
302
+ target_song = target_song[:, :target_length]
303
+ # pad last segment
304
+ else:
305
+ pad_length = segment_length - target_song.shape[-1] % segment_length
306
+ target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1)
307
+
308
+ # segmentize according to the given segment_length
309
+ whole_batch_data = []
310
+ batch_wise_data = []
311
+ for cur_segment_idx in range(target_song.shape[-1]//segment_length):
312
+ batch_wise_data.append(target_song[..., cur_segment_idx*segment_length:(cur_segment_idx+1)*segment_length])
313
+ if len(batch_wise_data)==self.args.batch_size:
314
+ whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
315
+ batch_wise_data = []
316
+ if batch_wise_data:
317
+ whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
318
+
319
+ return whole_batch_data
320
+
321
+
322
+
323
+ def trim_audio(target_file_path, start_point_in_second=0, duration_in_second=30, sample_rate=44100):
324
+ # insure format
325
+ cur_aud, _ = librosa.load(target_file_path, sr=sample_rate, mono=False)
326
+ sf.write(target_file_path, cur_aud.transpose(-1, -2), sample_rate, 'PCM_16')
327
+ # trim if possible
328
+ cur_wav_length = load_wav_length(target_file_path)
329
+ if cur_wav_length < duration_in_second*sample_rate:
330
+ return
331
+ if cur_wav_length-start_point_in_second*sample_rate < duration_in_second*sample_rate:
332
+ trimmed_audio = load_wav_segment(target_file_path, start_point=int(start_point_in_second*sample_rate), axis=1)
333
+ else:
334
+ trimmed_audio = load_wav_segment(target_file_path, start_point=int(start_point_in_second*sample_rate), duration=int(duration_in_second*sample_rate), axis=1)
335
+ sf.write(target_file_path, trimmed_audio, sample_rate, 'PCM_16')
336
+
337
+
338
+ def set_up(start_point_in_second=0, duration_in_second=30):
339
+ os.environ['MASTER_ADDR'] = '127.0.0.1'
340
+ os.environ["CUDA_VISIBLE_DEVICES"] = '0'
341
+ os.environ['MASTER_PORT'] = '8888'
342
+
343
+ def str2bool(v):
344
+ if v.lower() in ('yes', 'true', 't', 'y', '1'):
345
+ return True
346
+ elif v.lower() in ('no', 'false', 'f', 'n', '0'):
347
+ return False
348
+ else:
349
+ raise argparse.ArgumentTypeError('Boolean value expected.')
350
+
351
+ ''' Configurations for music mixing style transfer '''
352
+ currentdir = os.path.dirname(os.path.realpath(__file__))
353
+ default_ckpt_path_enc = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt')
354
+ default_ckpt_path_conv = os.path.join(os.path.dirname(currentdir), 'weights', 'MixFXcloner_ps.pt')
355
+ default_norm_feature_path = os.path.join(os.path.dirname(currentdir), 'weights', 'musdb18_fxfeatures_eqcompimagegain.npy')
356
+
357
+ import argparse
358
+ import yaml
359
+ parser = argparse.ArgumentParser()
360
+
361
+ directory_args = parser.add_argument_group('Directory args')
362
+ # directory paths
363
+ directory_args.add_argument('--target_dir', type=str, default='./yt_dir/')
364
+ directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir')
365
+ directory_args.add_argument('--input_file_name', type=str, default='input')
366
+ directory_args.add_argument('--reference_file_name', type=str, default='reference')
367
+ directory_args.add_argument('--reference_file_name_2interpolate', type=str, default='reference_B')
368
+ # saved weights
369
+ directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path_enc)
370
+ directory_args.add_argument('--ckpt_path_conv', type=str, default=default_ckpt_path_conv)
371
+ directory_args.add_argument('--precomputed_normalization_feature', type=str, default=default_norm_feature_path)
372
+
373
+ inference_args = parser.add_argument_group('Inference args')
374
+ inference_args.add_argument('--sample_rate', type=int, default=44100)
375
+ inference_args.add_argument('--segment_length', type=int, default=2**19) # segmentize input according to this duration
376
+ inference_args.add_argument('--segment_length_ref', type=int, default=2**19) # segmentize reference according to this duration
377
+ # stem-level instruments & separation
378
+ inference_args.add_argument('--instruments', type=str2bool, default=["drums", "bass", "other", "vocals"], help='instrumental tracks to perform style transfer')
379
+ inference_args.add_argument('--stem_level_directory_name', type=str, default='separated')
380
+ inference_args.add_argument('--save_each_inst', type=str2bool, default=False)
381
+ inference_args.add_argument('--do_not_separate', type=str2bool, default=False)
382
+ inference_args.add_argument('--separation_model', type=str, default='htdemucs')
383
+ # FX normalization
384
+ inference_args.add_argument('--normalize_input', type=str2bool, default=True)
385
+ inference_args.add_argument('--normalization_order', type=str2bool, default=['loudness', 'eq', 'compression', 'imager', 'loudness']) # Effects to be normalized, order matters
386
+ inference_args.add_argument('--match_output_loudness', type=str2bool, default=False)
387
+ # interpolation
388
+ inference_args.add_argument('--interpolation', type=str2bool, default=False)
389
+ inference_args.add_argument('--interpolate_segments', type=int, default=30)
390
 
391
+ device_args = parser.add_argument_group('Device args')
392
+ device_args.add_argument('--workers', type=int, default=1)
393
+ device_args.add_argument('--batch_size', type=int, default=1) # for processing long audio
394
+
395
+ args = parser.parse_args()
396
+
397
+ # load network configurations
398
+ with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f:
399
+ configs = yaml.full_load(f)
400
+ args.cfg_encoder = configs['Effects_Encoder']['default']
401
+ args.cfg_converter = configs['TCN']['default']
402
+
403
+ return args