jhtonyKoo commited on
Commit
471272a
·
verified ·
1 Parent(s): 5649001

Update inference/style_transfer.py

Browse files
Files changed (1) hide show
  1. inference/style_transfer.py +163 -388
inference/style_transfer.py CHANGED
@@ -1,404 +1,179 @@
1
- """
2
- Inference code of music style transfer
3
- of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"
4
- Process : converts the mixing style of the input music recording to that of the refernce music.
5
- files inside the target directory should be organized as follow
6
- "path_to_data_directory"/"song_name_#1"/input.wav
7
- "path_to_data_directory"/"song_name_#1"/reference.wav
8
- ...
9
- "path_to_data_directory"/"song_name_#n"/input.wav
10
- "path_to_data_directory"/"song_name_#n"/reference.wav
11
- where the 'input' and 'reference' should share the same names.
12
- """
13
- import numpy as np
14
- from glob import glob
15
  import os
16
- import torch
17
-
18
- import sys
19
- currentdir = os.path.dirname(os.path.realpath(__file__))
20
- sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer"))
21
- from networks import FXencoder, TCNModel
22
- from data_loader import *
23
- import librosa
24
- import pyloudnorm
25
-
26
-
27
-
28
- class Mixing_Style_Transfer_Inference:
29
- def __init__(self, args, trained_w_ddp=True):
30
- if torch.cuda.is_available():
31
- self.device = torch.device("cuda:0")
32
- else:
33
- self.device = torch.device("cpu")
34
- print(f"using device: {self.device} for inference")
35
-
36
- # inference computational hyperparameters
37
- self.args = args
38
- self.segment_length = args.segment_length
39
- self.batch_size = args.batch_size
40
- self.sample_rate = 44100 # sampling rate should be 44100
41
- self.time_in_seconds = int(args.segment_length // self.sample_rate)
42
-
43
- # directory configuration
44
- self.output_dir = args.target_dir if args.output_dir==None else args.output_dir
45
- self.target_dir = args.target_dir
46
-
47
- # load model and its checkpoint weights
48
- self.models = {}
49
- self.models['effects_encoder'] = FXencoder(args.cfg_encoder).to(self.device)
50
- self.models['mixing_converter'] = TCNModel(nparams=args.cfg_converter["condition_dimension"], \
51
- ninputs=2, \
52
- noutputs=2, \
53
- nblocks=args.cfg_converter["nblocks"], \
54
- dilation_growth=args.cfg_converter["dilation_growth"], \
55
- kernel_size=args.cfg_converter["kernel_size"], \
56
- channel_width=args.cfg_converter["channel_width"], \
57
- stack_size=args.cfg_converter["stack_size"], \
58
- cond_dim=args.cfg_converter["condition_dimension"], \
59
- causal=args.cfg_converter["causal"]).to(self.device)
60
-
61
- ckpt_paths = {'effects_encoder' : args.ckpt_path_enc, \
62
- 'mixing_converter' : args.ckpt_path_conv}
63
- # reload saved model weights
64
- ddp = trained_w_ddp
65
- self.reload_weights(ckpt_paths, ddp=ddp)
66
-
67
- # load data loader for the inference procedure
68
- inference_dataset = Song_Dataset_Inference(args)
69
- self.data_loader = DataLoader(inference_dataset, \
70
- batch_size=1, \
71
- shuffle=False, \
72
- num_workers=args.workers, \
73
- drop_last=False)
74
-
75
- ''' check stem-wise result '''
76
- if not self.args.do_not_separate:
77
- os.environ['MKL_THREADING_LAYER'] = 'GNU'
78
- separate_file_names = [args.input_file_name, args.reference_file_name]
79
- if self.args.interpolation:
80
- separate_file_names.append(args.reference_file_name_2interpolate)
81
- for cur_idx, cur_inf_dir in enumerate(sorted(glob(f"{args.target_dir}*/"))):
82
- for cur_file_name in separate_file_names:
83
- cur_sep_file_path = os.path.join(cur_inf_dir, cur_file_name+'.wav')
84
- cur_sep_output_dir = os.path.join(cur_inf_dir, args.stem_level_directory_name)
85
- if os.path.exists(os.path.join(cur_sep_output_dir, self.args.separation_model, cur_file_name, 'drums.wav')):
86
- print(f'\talready separated current file : {cur_sep_file_path}')
87
- else:
88
- cur_cmd_line = f"demucs {cur_sep_file_path} -n {self.args.separation_model} -d {self.device} -o {cur_sep_output_dir}"
89
- os.system(cur_cmd_line)
90
-
91
-
92
- # reload model weights from the target checkpoint path
93
- def reload_weights(self, ckpt_paths, ddp=True):
94
- for cur_model_name in self.models.keys():
95
- checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device)
96
-
97
- from collections import OrderedDict
98
- new_state_dict = OrderedDict()
99
- for k, v in checkpoint["model"].items():
100
- # remove `module.` if the model was trained with DDP
101
- name = k[7:] if ddp else k
102
- new_state_dict[name] = v
103
-
104
- # load params
105
- self.models[cur_model_name].load_state_dict(new_state_dict)
106
-
107
- print(f"---reloaded checkpoint weights : {cur_model_name} ---")
108
-
109
-
110
- # Inference whole song
111
- def inference(self, input_track_path, reference_track_path):
112
- print("\n======= Start to inference music mixing style transfer =======")
113
- # normalized input
114
- output_name_tag = 'output' if self.args.normalize_input else 'output_notnormed'
115
-
116
- for step, (input_stems, reference_stems, dir_name) in enumerate(self.data_loader):
117
- print(f"---inference file name : {dir_name[0]}---")
118
- cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
119
- os.makedirs(cur_out_dir, exist_ok=True)
120
- ''' stem-level inference '''
121
- inst_outputs = []
122
- for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
123
- print(f'\t{cur_inst_name}...')
124
- ''' segmentize whole songs into batch '''
125
- if len(input_stems[0][cur_inst_idx][0]) > self.args.segment_length:
126
- cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
127
- dir_name[0], \
128
- segment_length=self.args.segment_length, \
129
- discard_last=False)
130
- else:
131
- cur_inst_input_stem = [input_stems[:, cur_inst_idx]]
132
- if len(reference_stems[0][cur_inst_idx][0]) > self.args.segment_length*2:
133
- cur_inst_reference_stem = self.batchwise_segmentization(reference_stems[0][cur_inst_idx], \
134
- dir_name[0], \
135
- segment_length=self.args.segment_length_ref, \
136
- discard_last=False)
137
- else:
138
- cur_inst_reference_stem = [reference_stems[:, cur_inst_idx]]
139
-
140
- ''' inference '''
141
- # first extract reference style embedding
142
- infered_ref_data_list = []
143
- for cur_ref_data in cur_inst_reference_stem:
144
- cur_ref_data = cur_ref_data.to(self.device)
145
- # Effects Encoder inference
146
- with torch.no_grad():
147
- self.models["effects_encoder"].eval()
148
- reference_feature = self.models["effects_encoder"](cur_ref_data)
149
- infered_ref_data_list.append(reference_feature)
150
- # compute average value from the extracted exbeddings
151
- infered_ref_data = torch.stack(infered_ref_data_list)
152
- infered_ref_data_avg = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
153
-
154
- # mixing style converter
155
- infered_data_list = []
156
- for cur_data in cur_inst_input_stem:
157
- cur_data = cur_data.to(self.device)
158
- with torch.no_grad():
159
- self.models["mixing_converter"].eval()
160
- infered_data = self.models["mixing_converter"](cur_data, infered_ref_data_avg.unsqueeze(0))
161
- infered_data_list.append(infered_data.cpu().detach())
162
-
163
- # combine back to whole song
164
- for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
165
- cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
166
- fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
167
- # final output of current instrument
168
- fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
169
-
170
- inst_outputs.append(fin_data_out_inst)
171
- # save output of each instrument
172
- if self.args.save_each_inst:
173
- sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
174
-
175
- # remix
176
- fin_data_out_mix = sum(inst_outputs)
177
-
178
- # loudness adjusting for mastering purpose
179
- if self.args.match_output_loudness:
180
- meter = pyloudnorm.Meter(44100)
181
- loudness_out = meter.integrated_loudness(fin_data_out_mix.transpose(-1, -2))
182
- reference_aud = load_wav_segment(reference_track_path, axis=1)
183
- loudness_ref = meter.integrated_loudness(reference_aud)
184
- # adjust output loudness to that of the reference
185
- fin_data_out_mix = pyloudnorm.normalize.loudness(fin_data_out_mix, loudness_out, loudness_ref)
186
- fin_data_out_mix = np.clip(fin_data_out_mix, -1., 1.)
187
-
188
- # save output
189
- fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav")
190
- sf.write(fin_output_path, fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
191
 
192
- return fin_output_path, fin_data_out_mix
 
 
193
 
 
 
 
 
 
 
 
 
194
 
195
- # Inference whole song
196
- def inference_interpolation(self, ):
197
- print("\n======= Start to inference interpolation examples =======")
198
- # normalized input
199
- output_name_tag = 'output_interpolation' if self.args.normalize_input else 'output_notnormed_interpolation'
200
-
201
- for step, (input_stems, reference_stems_A, reference_stems_B, dir_name) in enumerate(self.data_loader):
202
- print(f"---inference file name : {dir_name[0]}---")
203
- cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
204
- os.makedirs(cur_out_dir, exist_ok=True)
205
- ''' stem-level inference '''
206
- inst_outputs = []
207
- for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
208
- print(f'\t{cur_inst_name}...')
209
- ''' segmentize whole song '''
210
- # segmentize input according to number of interpolating segments
211
- interpolate_segment_length = input_stems[0][cur_inst_idx].shape[1] // self.args.interpolate_segments + 1
212
- cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
213
- dir_name[0], \
214
- segment_length=interpolate_segment_length, \
215
- discard_last=False)
216
- # batchwise segmentize 2 reference tracks
217
- if len(reference_stems_A[0][cur_inst_idx][0]) > self.args.segment_length_ref:
218
- cur_inst_reference_stem_A = self.batchwise_segmentization(reference_stems_A[0][cur_inst_idx], \
219
- dir_name[0], \
220
- segment_length=self.args.segment_length_ref, \
221
- discard_last=False)
222
- else:
223
- cur_inst_reference_stem_A = [reference_stems_A[:, cur_inst_idx]]
224
- if len(reference_stems_B[0][cur_inst_idx][0]) > self.args.segment_length_ref:
225
- cur_inst_reference_stem_B = self.batchwise_segmentization(reference_stems_B[0][cur_inst_idx], \
226
- dir_name[0], \
227
- segment_length=self.args.segment_length, \
228
- discard_last=False)
229
- else:
230
- cur_inst_reference_stem_B = [reference_stems_B[:, cur_inst_idx]]
231
-
232
- ''' inference '''
233
- # first extract reference style embeddings
234
- # reference A
235
- infered_ref_data_list = []
236
- for cur_ref_data in cur_inst_reference_stem_A:
237
- cur_ref_data = cur_ref_data.to(self.device)
238
- # Effects Encoder inference
239
- with torch.no_grad():
240
- self.models["effects_encoder"].eval()
241
- reference_feature = self.models["effects_encoder"](cur_ref_data)
242
- infered_ref_data_list.append(reference_feature)
243
- # compute average value from the extracted exbeddings
244
- infered_ref_data = torch.stack(infered_ref_data_list)
245
- infered_ref_data_avg_A = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
246
-
247
- # reference B
248
- infered_ref_data_list = []
249
- for cur_ref_data in cur_inst_reference_stem_B:
250
- cur_ref_data = cur_ref_data.to(self.device)
251
- # Effects Encoder inference
252
- with torch.no_grad():
253
- self.models["effects_encoder"].eval()
254
- reference_feature = self.models["effects_encoder"](cur_ref_data)
255
- infered_ref_data_list.append(reference_feature)
256
- # compute average value from the extracted exbeddings
257
- infered_ref_data = torch.stack(infered_ref_data_list)
258
- infered_ref_data_avg_B = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
259
-
260
- # mixing style converter
261
- infered_data_list = []
262
- for cur_idx, cur_data in enumerate(cur_inst_input_stem):
263
- cur_data = cur_data.to(self.device)
264
- # perform linear interpolation on embedding space
265
- cur_weight = (self.args.interpolate_segments-1-cur_idx) / (self.args.interpolate_segments-1)
266
- cur_ref_emb = cur_weight * infered_ref_data_avg_A + (1-cur_weight) * infered_ref_data_avg_B
267
- with torch.no_grad():
268
- self.models["mixing_converter"].eval()
269
- infered_data = self.models["mixing_converter"](cur_data, cur_ref_emb.unsqueeze(0))
270
- infered_data_list.append(infered_data.cpu().detach())
271
-
272
- # combine back to whole song
273
- for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
274
- cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
275
- fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
276
- # final output of current instrument
277
- fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
278
- inst_outputs.append(fin_data_out_inst)
279
-
280
- # save output of each instrument
281
- if self.args.save_each_inst:
282
- sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
283
- # remix
284
- fin_data_out_mix = sum(inst_outputs)
285
- # fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav")
286
- # sf.write(fin_output_path, fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
287
-
288
- # return fin_output_path, fin_data_out_mix
289
- return fin_data_out_mix
290
-
291
-
292
- # function that segmentize an entire song into batch
293
- def batchwise_segmentization(self, target_song, song_name, segment_length, discard_last=False):
294
- assert target_song.shape[-1] >= self.args.segment_length, \
295
- f"Error : Insufficient duration!\n\t \
296
- Target song's length is shorter than segment length.\n\t \
297
- Song name : {song_name}\n\t \
298
- Consider changing the 'segment_length' or song with sufficient duration"
299
-
300
- # discard restovers (last segment)
301
- if discard_last:
302
- target_length = target_song.shape[-1] - target_song.shape[-1] % segment_length
303
- target_song = target_song[:, :target_length]
304
- # pad last segment
305
- else:
306
- pad_length = segment_length - target_song.shape[-1] % segment_length
307
- target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1)
308
-
309
- # segmentize according to the given segment_length
310
- whole_batch_data = []
311
- batch_wise_data = []
312
- for cur_segment_idx in range(target_song.shape[-1]//segment_length):
313
- batch_wise_data.append(target_song[..., cur_segment_idx*segment_length:(cur_segment_idx+1)*segment_length])
314
- if len(batch_wise_data)==self.args.batch_size:
315
- whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
316
- batch_wise_data = []
317
- if batch_wise_data:
318
- whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
319
-
320
- return whole_batch_data
321
-
322
 
 
323
 
324
- def trim_audio(target_file_path, start_point_in_second=0, duration_in_second=30, sample_rate=44100):
325
- # insure format
326
- cur_aud, _ = librosa.load(target_file_path, sr=sample_rate, mono=False)
327
- sf.write(target_file_path, cur_aud.transpose(-1, -2), sample_rate, 'PCM_16')
328
- # trim if possible
329
- cur_wav_length = load_wav_length(target_file_path)
330
- if cur_wav_length < duration_in_second*sample_rate:
331
- return
332
- if cur_wav_length-start_point_in_second*sample_rate < duration_in_second*sample_rate:
333
- trimmed_audio = load_wav_segment(target_file_path, start_point=int(start_point_in_second*sample_rate), axis=1)
334
- else:
335
- trimmed_audio = load_wav_segment(target_file_path, start_point=int(start_point_in_second*sample_rate), duration=int(duration_in_second*sample_rate), axis=1)
336
- sf.write(target_file_path, trimmed_audio, sample_rate, 'PCM_16')
337
 
 
 
338
 
339
- def set_up(start_point_in_second=0, duration_in_second=30):
340
- os.environ['MASTER_ADDR'] = '127.0.0.1'
341
- os.environ["CUDA_VISIBLE_DEVICES"] = '0'
342
- os.environ['MASTER_PORT'] = '8888'
343
 
344
- def str2bool(v):
345
- if v.lower() in ('yes', 'true', 't', 'y', '1'):
346
- return True
347
- elif v.lower() in ('no', 'false', 'f', 'n', '0'):
348
- return False
349
- else:
350
- raise argparse.ArgumentTypeError('Boolean value expected.')
 
 
351
 
352
- ''' Configurations for music mixing style transfer '''
353
- currentdir = os.path.dirname(os.path.realpath(__file__))
354
- default_ckpt_path_enc = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt')
355
- default_ckpt_path_conv = os.path.join(os.path.dirname(currentdir), 'weights', 'MixFXcloner_ps.pt')
356
- default_norm_feature_path = os.path.join(os.path.dirname(currentdir), 'weights', 'musdb18_fxfeatures_eqcompimagegain.npy')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357
 
358
- import argparse
359
- import yaml
360
- parser = argparse.ArgumentParser()
 
 
 
361
 
362
- directory_args = parser.add_argument_group('Directory args')
363
- # directory paths
364
- directory_args.add_argument('--target_dir', type=str, default='./yt_dir/')
365
- directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir')
366
- directory_args.add_argument('--input_file_name', type=str, default='input')
367
- directory_args.add_argument('--reference_file_name', type=str, default='reference')
368
- directory_args.add_argument('--reference_file_name_2interpolate', type=str, default='reference_B')
369
- # saved weights
370
- directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path_enc)
371
- directory_args.add_argument('--ckpt_path_conv', type=str, default=default_ckpt_path_conv)
372
- directory_args.add_argument('--precomputed_normalization_feature', type=str, default=default_norm_feature_path)
373
 
374
- inference_args = parser.add_argument_group('Inference args')
375
- inference_args.add_argument('--sample_rate', type=int, default=44100)
376
- inference_args.add_argument('--segment_length', type=int, default=2**19) # segmentize input according to this duration
377
- inference_args.add_argument('--segment_length_ref', type=int, default=2**19) # segmentize reference according to this duration
378
- # stem-level instruments & separation
379
- inference_args.add_argument('--instruments', type=str2bool, default=["drums", "bass", "other", "vocals"], help='instrumental tracks to perform style transfer')
380
- inference_args.add_argument('--stem_level_directory_name', type=str, default='separated')
381
- inference_args.add_argument('--save_each_inst', type=str2bool, default=False)
382
- inference_args.add_argument('--do_not_separate', type=str2bool, default=False)
383
- inference_args.add_argument('--separation_model', type=str, default='htdemucs')
384
- # FX normalization
385
- inference_args.add_argument('--normalize_input', type=str2bool, default=True)
386
- inference_args.add_argument('--normalization_order', type=str2bool, default=['loudness', 'eq', 'compression', 'imager', 'loudness']) # Effects to be normalized, order matters
387
- inference_args.add_argument('--match_output_loudness', type=str2bool, default=False)
388
- # interpolation
389
- inference_args.add_argument('--interpolation', type=str2bool, default=False)
390
- inference_args.add_argument('--interpolate_segments', type=int, default=30)
391
 
392
- device_args = parser.add_argument_group('Device args')
393
- device_args.add_argument('--workers', type=int, default=1)
394
- device_args.add_argument('--batch_size', type=int, default=1) # for processing long audio
395
-
396
- args = parser.parse_args()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
397
 
398
- # load network configurations
399
- with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f:
400
- configs = yaml.full_load(f)
401
- args.cfg_encoder = configs['Effects_Encoder']['default']
402
- args.cfg_converter = configs['TCN']['default']
403
 
404
- return args
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import binascii
3
+ import warnings
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ import json
6
+ import argparse
7
+ import copy
8
 
9
+ import numpy as np
10
+ import matplotlib.pyplot as plt
11
+ import torch
12
+ import tqdm
13
+ import librosa
14
+ import soundfile as sf
15
+ import gradio as gr
16
+ import pytube as pt
17
 
18
+ from pytube.exceptions import VideoUnavailable
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ from inference.style_transfer import *
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ yt_video_dir = f"./yt_dir/0"
24
+ os.makedirs(yt_video_dir, exist_ok=True)
25
 
 
 
 
 
26
 
27
+ def get_audio_from_yt_video_input(yt_link: str, start_point_in_second=0, duration_in_second=30):
28
+ try:
29
+ yt = pt.YouTube(yt_link)
30
+ t = yt.streams.filter(only_audio=True)
31
+ filename_in = os.path.join(yt_video_dir, "input.wav")
32
+ t[0].download(filename=filename_in)
33
+ except VideoUnavailable as e:
34
+ warnings.warn(f"Video Not Found at {yt_link} ({e})")
35
+ filename_in = None
36
 
37
+ # trim audio length - due to computation time on HuggingFace environment
38
+ trim_audio(target_file_path=filename_in, start_point_in_second=start_point_in_second, duration_in_second=duration_in_second)
39
+
40
+ return filename_in, filename_in
41
+
42
+ def get_audio_from_yt_video_ref(yt_link: str, start_point_in_second=0, duration_in_second=30):
43
+ try:
44
+ yt = pt.YouTube(yt_link)
45
+ t = yt.streams.filter(only_audio=True)
46
+ filename_ref = os.path.join(yt_video_dir, "reference.wav")
47
+ t[0].download(filename=filename_ref)
48
+ except VideoUnavailable as e:
49
+ warnings.warn(f"Video Not Found at {yt_link} ({e})")
50
+ filename_ref = None
51
+
52
+ # trim audio length - due to computation time on HuggingFace environment
53
+ trim_audio(target_file_path=filename_ref, start_point_in_second=start_point_in_second, duration_in_second=duration_in_second)
54
+
55
+ return filename_ref, filename_ref
56
 
57
+ def inference(file_uploaded_in, file_uploaded_ref):
58
+ # clear out previously separated results
59
+ os.system(f"rm -r {yt_video_dir}/separated")
60
+ # change file path name
61
+ # os.system(f"cp {file_uploaded_in} {yt_video_dir}/input.wav")
62
+ # os.system(f"cp {file_uploaded_ref} {yt_video_dir}/reference.wav")
63
 
64
+ sample_rate, data = file_uploaded_in
65
+ sf.write(f"{yt_video_dir}/input.wav", data, sample_rate)
66
+ sample_rate, data = file_uploaded_ref
67
+ sf.write(f"{yt_video_dir}/reference.wav", data, sample_rate)
 
 
 
 
 
 
 
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
+ # Perform music mixing style transfer
71
+ args = set_up()
72
+
73
+ inference_style_transfer = Mixing_Style_Transfer_Inference(args)
74
+ # output_wav_path, fin_data_out_mix = inference_style_transfer.inference(file_uploaded_in, file_uploaded_ref)
75
+ output_wav_path, fin_data_out_mix = inference_style_transfer.inference(f"{yt_video_dir}/input.wav", f"{yt_video_dir}/reference.wav")
76
+ print(fin_data_out_mix.shape)
77
+ return (44100, fin_data_out_mix.transpose())
78
+
79
+
80
+
81
+ with gr.Blocks() as demo:
82
+ gr.HTML(
83
+ """
84
+ <div style="text-align: center; max-width: 700px; margin: 0 auto;">
85
+ <div
86
+ style="
87
+ display: inline-flex;
88
+ align-items: center;
89
+ gap: 0.8rem;
90
+ font-size: 1.75rem;
91
+ "
92
+ >
93
+ <h1 style="font-weight: 900; margin-bottom: 7px;">
94
+ Music Mixing Style Transfer
95
+ </h1>
96
+ </div>
97
+ """
98
+ )
99
+ gr.Markdown(
100
+ """
101
+ This page is a Hugging Face interactive demo of the paper ["Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"](https://huggingface.co/papers/2211.02247) (ICASSP 2023).
102
+ - [project page](https://jhtonykoo.github.io/MixingStyleTransfer/)
103
+ - [GitHub](https://github.com/jhtonyKoo/music_mixing_style_transfer)
104
+ - [supplementary](https://pale-cicada-946.notion.site/Music-Mixing-Style-Transfer-A-Contrastive-Learning-Approach-to-Disentangle-Audio-Effects-Supplemen-e6eccd9a431a4a8fa4fdd5adb2d3f219)
105
+ """
106
+ )
107
+ with gr.Group():
108
+ with gr.Column():
109
+ with gr.Blocks():
110
+ with gr.Tab("Input Music"):
111
+ file_uploaded_in = gr.Audio(label="Input track (mix) to be mixing style transferred")
112
+ with gr.Tab("YouTube url"):
113
+ with gr.Row():
114
+ yt_link_in = gr.Textbox(
115
+ label="Enter YouTube Link of the Video", autofocus=True, lines=3
116
+ )
117
+ yt_in_start_sec = gr.Number(
118
+ value=0,
119
+ label="starting point of the song (in seconds)"
120
+ )
121
+ yt_in_duration_sec = gr.Number(
122
+ value=30,
123
+ label="duration of the song (in seconds)"
124
+ )
125
+ yt_btn_in = gr.Button("Download Audio from YouTube Link", size="lg")
126
+ yt_audio_path_in = gr.Audio(
127
+ label="Input Audio Extracted from the YouTube Video", interactive=False
128
+ )
129
+ yt_btn_in.click(
130
+ get_audio_from_yt_video_input,
131
+ inputs=[yt_link_in, yt_in_start_sec, yt_in_duration_sec],
132
+ outputs=[yt_audio_path_in, file_uploaded_in],
133
+ )
134
+ with gr.Blocks():
135
+ with gr.Tab("Reference Music"):
136
+ file_uploaded_ref = gr.Audio(label="Reference track (mix) to copy mixing style")
137
+ with gr.Tab("YouTube url"):
138
+ with gr.Row():
139
+ yt_link_ref = gr.Textbox(
140
+ label="Enter YouTube Link of the Video", autofocus=True, lines=3
141
+ )
142
+ yt_ref_start_sec = gr.Number(
143
+ value=0,
144
+ label="starting point of the song (in seconds)"
145
+ )
146
+ yt_ref_duration_sec = gr.Number(
147
+ value=30,
148
+ label="duration of the song (in seconds)"
149
+ )
150
+ yt_btn_ref = gr.Button("Download Audio from YouTube Link", size="lg")
151
+ yt_audio_path_ref = gr.Audio(
152
+ label="Reference Audio Extracted from the YouTube Video", interactive=False
153
+ )
154
+ yt_btn_ref.click(
155
+ get_audio_from_yt_video_ref,
156
+ inputs=[yt_link_ref, yt_ref_start_sec, yt_ref_duration_sec],
157
+ outputs=[yt_audio_path_ref, file_uploaded_ref],
158
+ )
159
+
160
+ with gr.Group():
161
+ gr.HTML(
162
+ """
163
+ <div> <h3> <center> Mixing Style Transfer. Perform stem-wise audio-effects style conversion by first source separating the input mix. The inference computation time takes longer as the input samples' duration. so plz be patient... </h3> </div>
164
+ """
165
+ )
166
+ with gr.Column():
167
+ inference_btn = gr.Button("Run Mixing Style Transfer")
168
+ with gr.Row():
169
+ output_mix = gr.Audio(label="mixing style transferred music track", type='numpy')
170
+ inference_btn.click(
171
+ inference,
172
+ inputs=[file_uploaded_in, file_uploaded_ref],
173
+ outputs=[output_mix],
174
+ )
175
 
 
 
 
 
 
176
 
177
+
178
+ if __name__ == "__main__":
179
+ demo.launch(debug=True)