jhansi1 commited on
Commit
3534478
·
verified ·
1 Parent(s): 681448d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -18
app.py CHANGED
@@ -1,35 +1,35 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- # Use a pipeline as a high-level helper
4
  from transformers import pipeline
 
5
 
6
- pipe = pipeline("fill-mask", model="google-bert/bert-base-uncased")
7
- """
8
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
9
- """
10
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
11
 
12
-
13
  def respond(
14
- message,
15
- history: list[tuple[str, str]],
16
- system_message,
17
- max_tokens,
18
- temperature,
19
- top_p,
20
  ):
21
  messages = [{"role": "system", "content": system_message}]
22
-
 
23
  for val in history:
24
  if val[0]:
25
  messages.append({"role": "user", "content": val[0]})
26
  if val[1]:
27
  messages.append({"role": "assistant", "content": val[1]})
28
 
 
29
  messages.append({"role": "user", "content": message})
30
 
31
  response = ""
32
 
 
33
  for message in client.chat_completion(
34
  messages,
35
  max_tokens=max_tokens,
@@ -38,14 +38,11 @@ def respond(
38
  top_p=top_p,
39
  ):
40
  token = message.choices[0].delta.content
41
-
42
  response += token
43
  yield response
44
 
45
 
46
- """
47
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
48
- """
49
  demo = gr.ChatInterface(
50
  respond,
51
  additional_inputs=[
@@ -62,6 +59,5 @@ demo = gr.ChatInterface(
62
  ],
63
  )
64
 
65
-
66
  if __name__ == "__main__":
67
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
  from transformers import pipeline
4
+ from typing import List, Tuple # Importing for type annotations
5
 
6
+ # Initialize InferenceClient with the correct model
 
 
 
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+ # Function to handle the response generation using chat completion
10
  def respond(
11
+ message: str,
12
+ history: List[Tuple[str, str]], # Using List and Tuple for type annotation
13
+ system_message: str,
14
+ max_tokens: int,
15
+ temperature: float,
16
+ top_p: float,
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
+
20
+ # Append history to the messages list
21
  for val in history:
22
  if val[0]:
23
  messages.append({"role": "user", "content": val[0]})
24
  if val[1]:
25
  messages.append({"role": "assistant", "content": val[1]})
26
 
27
+ # Append the current user message
28
  messages.append({"role": "user", "content": message})
29
 
30
  response = ""
31
 
32
+ # Use the client to get chat completion and stream the response
33
  for message in client.chat_completion(
34
  messages,
35
  max_tokens=max_tokens,
 
38
  top_p=top_p,
39
  ):
40
  token = message.choices[0].delta.content
 
41
  response += token
42
  yield response
43
 
44
 
45
+ # Setting up Gradio Interface
 
 
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
 
59
  ],
60
  )
61
 
 
62
  if __name__ == "__main__":
63
  demo.launch()