Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
# Use a pipeline as a high-level helper
|
4 |
from transformers import pipeline
|
|
|
5 |
|
6 |
-
|
7 |
-
"""
|
8 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
9 |
-
"""
|
10 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
11 |
|
12 |
-
|
13 |
def respond(
|
14 |
-
message,
|
15 |
-
history:
|
16 |
-
system_message,
|
17 |
-
max_tokens,
|
18 |
-
temperature,
|
19 |
-
top_p,
|
20 |
):
|
21 |
messages = [{"role": "system", "content": system_message}]
|
22 |
-
|
|
|
23 |
for val in history:
|
24 |
if val[0]:
|
25 |
messages.append({"role": "user", "content": val[0]})
|
26 |
if val[1]:
|
27 |
messages.append({"role": "assistant", "content": val[1]})
|
28 |
|
|
|
29 |
messages.append({"role": "user", "content": message})
|
30 |
|
31 |
response = ""
|
32 |
|
|
|
33 |
for message in client.chat_completion(
|
34 |
messages,
|
35 |
max_tokens=max_tokens,
|
@@ -38,14 +38,11 @@ def respond(
|
|
38 |
top_p=top_p,
|
39 |
):
|
40 |
token = message.choices[0].delta.content
|
41 |
-
|
42 |
response += token
|
43 |
yield response
|
44 |
|
45 |
|
46 |
-
|
47 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
48 |
-
"""
|
49 |
demo = gr.ChatInterface(
|
50 |
respond,
|
51 |
additional_inputs=[
|
@@ -62,6 +59,5 @@ demo = gr.ChatInterface(
|
|
62 |
],
|
63 |
)
|
64 |
|
65 |
-
|
66 |
if __name__ == "__main__":
|
67 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
from transformers import pipeline
|
4 |
+
from typing import List, Tuple # Importing for type annotations
|
5 |
|
6 |
+
# Initialize InferenceClient with the correct model
|
|
|
|
|
|
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
+
# Function to handle the response generation using chat completion
|
10 |
def respond(
|
11 |
+
message: str,
|
12 |
+
history: List[Tuple[str, str]], # Using List and Tuple for type annotation
|
13 |
+
system_message: str,
|
14 |
+
max_tokens: int,
|
15 |
+
temperature: float,
|
16 |
+
top_p: float,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
# Append history to the messages list
|
21 |
for val in history:
|
22 |
if val[0]:
|
23 |
messages.append({"role": "user", "content": val[0]})
|
24 |
if val[1]:
|
25 |
messages.append({"role": "assistant", "content": val[1]})
|
26 |
|
27 |
+
# Append the current user message
|
28 |
messages.append({"role": "user", "content": message})
|
29 |
|
30 |
response = ""
|
31 |
|
32 |
+
# Use the client to get chat completion and stream the response
|
33 |
for message in client.chat_completion(
|
34 |
messages,
|
35 |
max_tokens=max_tokens,
|
|
|
38 |
top_p=top_p,
|
39 |
):
|
40 |
token = message.choices[0].delta.content
|
|
|
41 |
response += token
|
42 |
yield response
|
43 |
|
44 |
|
45 |
+
# Setting up Gradio Interface
|
|
|
|
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
|
|
59 |
],
|
60 |
)
|
61 |
|
|
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|