import gradio as gr import uuid import os from typing import Optional import tempfile from pydub import AudioSegment import re import subprocess import numpy as np import soundfile as sf import sounddevice as sd import time import sox from io import BytesIO import asyncio import aiohttp from moviepy.editor import VideoFileClip import threading import socketio import base64 ASR_API = "http://astarwiz.com:9998/asr" TTS_SPEAK_SERVICE = 'http://astarwiz.com:9603/speak' TTS_WAVE_SERVICE = 'http://astarwiz.com:9603/wave' bSegByPunct = True #bSegByPunct = False LANGUAGE_MAP = { "en": "English", "ma": "Malay", "ta": "Tamil", "zh": "Chinese" } DEVELOPER_PASSWORD = os.getenv("DEV_PWD") RAPID_API_KEY = os.getenv("RAPID_API_KEY") AVAILABLE_SPEAKERS = { "en": ["MS"], "ma": ["msFemale"], "ta": ["ta_female1"], "zh": ["childChinese2"] } audio_update_event = asyncio.Event() acc_cosy_audio = None # cosy voice tts related; #TTS_SOCKET_SERVER = "http://localhost:9444" TTS_SOCKET_SERVER = "http://astarwiz.com:9444" sio = socketio.AsyncClient() @sio.on('connect') def on_connect(): print('Connected to server') @sio.on('disconnect') def on_disconnect(): print('Disconnected from server') @sio.on('audio_chunk') async def on_audio_chunk(data): global translation_update, audio_update, acc_cosy_audio translated_seg_txt = data['trans_text'] with translation_lock: translation_update["content"] = translation_update["content"] + " " + translated_seg_txt translation_update["new"] = True audio_base64 = data['audio'] audio_bytes = base64.b64decode(audio_base64) audio_np = np.frombuffer(audio_bytes, dtype=np.int16) if (acc_cosy_audio is None): acc_cosy_audio = audio_np else: acc_cosy_audio = np.concatenate((acc_cosy_audio, audio_np)) with audio_lock: audio_update["content"] = (22050, audio_np) audio_update["new"] = True #audio_float = audio_np.astype(np.float32) / 32767.0 #audio_queue.append(audio_float) #accumulated_audio.extend(audio_float) @sio.on('tts_complete') async def on_tts_complete(): await sio.disconnect() print("Disconnected from server after TTS completion") audio_update_event.set() # Global variables for storing update information transcription_update = {"content": "", "new": False} translation_update = {"content": "", "new": False} audio_update = {"content": None, "new": False} # Locks for thread-safe operations transcription_lock = threading.Lock() translation_lock = threading.Lock() audio_lock = threading.Lock() def replace_audio_in_video(video_path, audio_path, output_path): command = [ 'ffmpeg', '-i', video_path, '-i', audio_path, '-c:v', 'copy', '-map', '0:v:0', '-map', '1:a:0', '-shortest', output_path ] subprocess.run(command, check=True) return output_path async def replace_audio_and_generate_video(temp_video_path, gradio_audio): print ("gradio_audio:", gradio_audio) if not temp_video_path or gradio_audio is None: return "Both video and audio are required to replace audio.", None if not os.path.exists(temp_video_path): return "Video file not found.", None # Unpack the Gradio audio output sample_rate, audio_data = gradio_audio # Ensure audio_data is a numpy array if not isinstance(audio_data, np.ndarray): audio_data = np.array(audio_data) # Create a temporary WAV file for the original audio with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_audio_file: original_audio_path = temp_audio_file.name sf.write(original_audio_path, audio_data, sample_rate) # Get video duration video_clip = VideoFileClip(temp_video_path) video_duration = video_clip.duration video_clip.close() # Get audio duration audio_duration = len(audio_data) / sample_rate # Calculate tempo factor tempo_factor = audio_duration / video_duration # Create a temporary WAV file for the tempo-adjusted audio with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_audio_file: adjusted_audio_path = temp_audio_file.name # Adjust audio tempo tfm = sox.Transformer() tfm.tempo(tempo_factor, 's') tfm.build(original_audio_path, adjusted_audio_path) # Generate output video path output_video_path = os.path.join(tempfile.gettempdir(), f"output_{uuid.uuid4()}.mp4") try: replace_audio_in_video(temp_video_path, adjusted_audio_path, output_video_path) return "Audio replaced successfully.", output_video_path except subprocess.CalledProcessError as e: return f"Error replacing audio: {str(e)}", None finally: os.unlink(original_audio_path) # Clean up the original audio file os.unlink(adjusted_audio_path) # Clean up the adjusted audio file async def fetch_youtube_id(youtube_url: str) -> str: if 'v=' in youtube_url: return youtube_url.split("v=")[1].split("&")[0] elif 'youtu.be/' in youtube_url: return youtube_url.split("youtu.be/")[1] elif 'shorts' in youtube_url: return youtube_url.split("/")[-1] else: raise Exception("Unsupported URL format") async def download_youtube_audio(youtube_url: str, output_dir: Optional[str] = None) -> Optional[tuple[str, str]]: video_id = await fetch_youtube_id(youtube_url) if not video_id: return None if output_dir is None: output_dir = tempfile.gettempdir() output_filename = os.path.join(output_dir, f"{video_id}.mp3") temp_filename = os.path.join(output_dir, f"{video_id}.mp4") if os.path.exists(output_filename) and os.path.exists(temp_filename): return (output_filename, temp_filename) url = "https://youtube86.p.rapidapi.com/api/youtube/links" headers = { 'Content-Type': 'application/json', 'x-rapidapi-host': 'youtube86.p.rapidapi.com', 'x-rapidapi-key': RAPID_API_KEY } data = { "url": youtube_url } async with aiohttp.ClientSession() as session: async with session.post(url, headers=headers, json=data) as response: if response.status == 200: result = await response.json() for url in result[0]['urls']: if url.get('isBundle'): audio_url = url['url'] extension = url['extension'] async with session.get(audio_url) as audio_response: if audio_response.status == 200: content = await audio_response.read() temp_filename = os.path.join(output_dir, f"{video_id}.{extension}") with open(temp_filename, 'wb') as audio_file: audio_file.write(content) audio = AudioSegment.from_file(temp_filename, format=extension) audio = audio.set_frame_rate(16000) audio.export(output_filename, format="mp3", parameters=["-ar", "16000"]) return (output_filename, temp_filename) else: print("Error:", response.status, await response.text()) return None punctuation_marks = r'([\.!?!?。])' def split_text_with_punctuation(text): # Split the text using the punctuation marks, keeping the punctuation marks split_text = re.split(punctuation_marks, text) # Combine each punctuation mark with the preceding segment combined_segments = [] # Loop through the split text in steps of 2 for i in range(0, len(split_text) - 1, 2): combined_segments.append(split_text[i] + split_text[i + 1]) # Handle any remaining text that doesn't have a punctuation following it if len(split_text) % 2 != 0 and split_text[-1]: combined_segments.append(split_text[-1]) # Split any segment that exceeds 50 words final_segments = [] for segment in combined_segments: words = segment.split() # Split each segment into words if len(words) > 50: # Split the segment into chunks of no more than 50 words for j in range(0, len(words), 50): final_segments.append(' '.join(words[j:j+50])) else: final_segments.append(segment) return [segment for segment in final_segments if segment] # Filter out empty strings def extract_segments(text): pattern = r'\[(\d+\.\d+)s\s*->\s*(\d+\.\d+)s\]\s*(.*?)(?=\[\d+\.\d+s|\Z)' matches = re.findall(pattern, text, re.DOTALL) if not matches: return [] segments = [] for start, end, content in matches: segments.append({ 'start': float(start), 'end': float(end), 'text': content.strip() }) return segments def adjust_tempo_pysox_array(gradio_audio, duration): # Unpack the Gradio audio output sample_rate, audio_data = gradio_audio # Ensure audio_data is a numpy array if not isinstance(audio_data, np.ndarray): audio_data = np.array(audio_data) # Calculate the current duration of the audio in seconds current_duration = len(audio_data) / sample_rate # Calculate the necessary tempo factor to match the desired duration tempo_factor = current_duration / duration # Create a pysox Transformer tfm = sox.Transformer() tfm.tempo(tempo_factor) # Use pysox to transform the audio directly in memory adjusted_audio = tfm.build_array(input_array=audio_data, sample_rate_in=sample_rate) # Trim or pad the audio to exactly match the desired duration target_length = int(sample_rate * duration) if len(adjusted_audio) > target_length: adjusted_audio = adjusted_audio[:target_length] # Trim if too long else: # Pad with zeros if too short adjusted_audio = np.pad(adjusted_audio, (0, target_length - len(adjusted_audio)), mode='constant') # Return the processed audio in the Gradio format (sample_rate, adjusted_audio) return sample_rate, adjusted_audio async def inference_via_llm_api(input_text, min_new_tokens=2, max_new_tokens=64): print(input_text) one_vllm_input = f"<|im_start|>system\nYou are a translation expert.<|im_end|>\n<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant" vllm_api = 'http://astarwiz.com:2333/' + "v1/completions" data = { "prompt": one_vllm_input, 'model': "./Edu-4B-NewTok-V2-20240904/", 'min_tokens': min_new_tokens, 'max_tokens': max_new_tokens, 'temperature': 0.1, 'top_p': 0.75, 'repetition_penalty': 1.1, "stop_token_ids": [151645, ], } async with aiohttp.ClientSession() as session: async with session.post(vllm_api, headers={"Content-Type": "application/json"}, json=data) as response: if response.status == 200: result = await response.json() if "choices" in result: return result["choices"][0]['text'].strip() return "The system got some error during vLLM generation. Please try it again." async def transcribe_and_speak(audio, source_lang, target_lang, youtube_url=None, target_speaker=None, progress_tracker=None): global transcription_update, translation_update, audio_update, acc_cosy_audio,audio_update_event transcription_update = {"content": "", "new": True} translation_update = {"content": "", "new": True} audio_update = {"content": None, "new": True} acc_cosy_audio =None video_path = None audio_update_event.clear() #progress = gr.Progress(); #progress(0.1, "started:") if youtube_url: audio = await download_youtube_audio(youtube_url) if audio is None: return "Failed to download YouTube audio.", None, None, video_path,(22050, accumulated_audio) audio, video_path = audio if not audio: return "Please provide an audio input or a valid YouTube URL.", None, None, video_path,(22050, accumulated_audio) # ASR #progress(0.2, "ASR started:") file_id = str(uuid.uuid4()) data = aiohttp.FormData() data.add_field('file', open(audio, 'rb')) data.add_field('language', 'ms' if source_lang == 'ma' else source_lang) data.add_field('model_name', 'whisper-large-v2-local-cs') if bSegByPunct: data.add_field('with_timestamp', 'false') else: data.add_field('with_timestamp', 'true') async with aiohttp.ClientSession() as session: async with session.post(ASR_API, data=data) as asr_response: if asr_response.status == 200: result = await asr_response.json() transcription = result['text'] with transcription_lock: transcription_update["content"] = transcription transcription_update["new"] = True else: return "ASR failed", None, None, video_path,(22050, accumulated_audio) #progress(0.4, "ASR done:") # use cosy voice if target_lang == 'en' or target_lang == 'zh' if target_lang == 'en' or target_lang == 'zh': try: if not sio.connected: server_url = TTS_SOCKET_SERVER await sio.connect(server_url) print(f"Connected to {server_url}") # use defualt voice tts_request = { 'text': transcription, 'overwrite_prompt': False, 'promptText':"", 'promptAudio':"", 'sourceLang':source_lang, 'targetLang':target_lang } await sio.emit('tts_request', tts_request) # wait until all cosy voice tts is done : await audio_update_event.wait() print('cosy tts complete,',audio_update) return transcription, translation_update["content"], audio_update["content"], video_path, (22050, acc_cosy_audio) except Exception as e: print(f"Failed to process request: {str(e)}") print("let use vits then") if bSegByPunct: split_result = split_text_with_punctuation(transcription) else: split_result = extract_segments(transcription); translate_segments = [] accumulated_audio = None sample_rate = 22050 global is_playing for i, segment in enumerate(split_result): if bSegByPunct: translation_prompt = f"Translate the following text from {LANGUAGE_MAP[source_lang]} to {LANGUAGE_MAP[target_lang]}: {segment}" else: translation_prompt = f"Translate the following text from {LANGUAGE_MAP[source_lang]} to {LANGUAGE_MAP[target_lang]}: {segment['text']}" translated_seg_txt = await inference_via_llm_api(translation_prompt) translate_segments.append(translated_seg_txt) print(f"Translation: {translated_seg_txt}") with translation_lock: translation_update["content"] = " ".join(translate_segments) translation_update["new"] = True # Generate TTS for each translated segment #progress(0.4 + (0.5 * (i + 1) / len(split_result)), "translation and tts in progress :") tts_params = { 'language': target_lang, 'speed': 1.1, 'speaker': target_speaker or AVAILABLE_SPEAKERS[target_lang][0], 'text': translated_seg_txt } async with aiohttp.ClientSession() as session: async with session.get(TTS_SPEAK_SERVICE, params=tts_params) as tts_response: if tts_response.status == 200: audio_file = await tts_response.text() audio_file = audio_file.strip() audio_url = f"{TTS_WAVE_SERVICE}?file={audio_file}" async with session.get(audio_url) as response: content = await response.read() audio_chunk, sr = sf.read(BytesIO(content)) #print ('audio_chunk:', type(audio_chunk),audio_chunk) #print ('audio_chunk:, src:', segment['end'] -segment['start'], ' tts:', len(audio_chunk)/sr) # _, audio_chunk = adjust_tempo_pysox_array( (sr, audio_chunk), segment['end'] -segment['start']) if accumulated_audio is None: accumulated_audio = audio_chunk sample_rate = sr else: accumulated_audio = np.concatenate((accumulated_audio, audio_chunk)) with audio_lock: audio_update["content"] = (sample_rate, audio_chunk) audio_update["new"] = True else: print(f"TTS failed for segment: {translated_seg_txt}") translated_text = " ".join(translate_segments) #progress(1, "all done.") print("sigal the playing could stop now. all tts generated") is_playing =False; if accumulated_audio is not None: return transcription, translated_text, audio_update["content"], video_path, (sample_rate,accumulated_audio) else: return transcription, translated_text, "TTS failed", video_path, (sample_rate, accumulated_audio) """ async def run_speech_translation(audio, source_lang, target_lang, youtube_url, target_speaker): temp_video_path = None transcription, translated_text, audio_chunksr, temp_video_path = await transcribe_and_speak(audio, source_lang, target_lang, youtube_url, target_speaker) return transcription, translated_text, audio_chunksr, temp_video_path """ async def update_transcription(): global transcription_update with transcription_lock: if transcription_update["new"]: content = transcription_update["content"] transcription_update["new"] = False return content return gr.update() async def update_translation(): global translation_update with translation_lock: if translation_update["new"]: content = translation_update["content"] translation_update["new"] = False return content return gr.update() async def update_audio(): global audio_update with audio_lock: if audio_update["new"]: content = audio_update["content"] audio_update["new"] = False return content return gr.update() def disable_button(): # Disable the button during processing return gr.update(interactive=False) with gr.Blocks() as demo: gr.Markdown("# Speech Translation") gr.Markdown("Speak into the microphone, upload an audio file, or provide a YouTube URL. The app will translate and speak it back to you.") with gr.Row(): user_audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath") user_youtube_url = gr.Textbox(label="YouTube URL (optional)") with gr.Row(): user_source_lang = gr.Dropdown(choices=["en", "ma", "ta", "zh"], label="Source Language", value="en") user_target_lang = gr.Dropdown(choices=["en", "ma", "ta", "zh"], label="Target Language", value="zh") user_target_speaker = gr.Dropdown(choices=AVAILABLE_SPEAKERS['zh'], label="Target Speaker", value="childChinese2") with gr.Row(): user_button = gr.Button("Translate and Speak", interactive=False) with gr.Row(): user_transcription_output = gr.Textbox(label="Transcription") user_translation_output = gr.Textbox(label="Translation") user_audio_output = gr.Audio(label="Translated Speech", visible =False) user_audio_final = gr.Audio(label="Final total Speech") status_message = gr.Textbox(label="Status", interactive=False) user_video_output = gr.HTML(label="YouTube Video") replace_audio_button = gr.Button("Replace Audio", interactive=False, visible =False) final_video_output = gr.Video(label="Video with Replaced Audio",visible=False) temp_video_path = gr.State() translation_progress = gr.State(0.0) async def update_button_state(audio, youtube_url, progress): print(audio, youtube_url, progress) # Button is interactive if there's input and progress is 0 or 1 (not in progress) print ("progress:", audio, youtube_url,bool(audio) , bool(youtube_url), progress == 0 or progress == 1) return gr.Button(interactive=(bool(audio) or bool(youtube_url)) and (progress == 0 or progress == 1)) user_audio_input.change( fn=update_button_state, inputs=[user_audio_input, user_youtube_url, translation_progress], outputs=user_button ) user_youtube_url.change( fn=update_button_state, inputs=[user_audio_input, user_youtube_url, translation_progress], outputs=user_button ) async def run_speech_translation_wrapper(audio, source_lang, target_lang, youtube_url, target_speaker,progress): progress = 0.1 temp_video_path = None transcription, translated_text, audio_chunksr, temp_video_path, accumulated_aud_buf = await transcribe_and_speak(audio, source_lang, target_lang, youtube_url, target_speaker) progress = 1 return transcription, translated_text, audio_chunksr, temp_video_path, "Translation complete", accumulated_aud_buf, gr.update(interactive=True) user_button.click( fn=disable_button, inputs=[], outputs=[user_button] # Disable the button during processing ).then( fn=run_speech_translation_wrapper, inputs=[user_audio_input, user_source_lang, user_target_lang, user_youtube_url, user_target_speaker, translation_progress], outputs=[user_transcription_output, user_translation_output, user_audio_output, temp_video_path, status_message,user_audio_final,user_button] ) async def update_replace_audio_button(audio_url, video_path): print("update replace:", audio_url, video_path) return gr.Button(interactive=bool(audio_url) and bool(video_path)) user_audio_output.change( fn=update_replace_audio_button, inputs=[user_audio_output, temp_video_path], outputs=[replace_audio_button] ) replace_audio_button.click( fn=replace_audio_and_generate_video, inputs=[temp_video_path, user_audio_final], outputs=[status_message, final_video_output] ) async def update_video_embed(youtube_url): if youtube_url: try: video_id = await fetch_youtube_id(youtube_url) return f'' except Exception as e: print(f"Error embedding video: {e}") return "" user_youtube_url.change( fn=update_video_embed, inputs=[user_youtube_url], outputs=[user_video_output] ) async def update_target_speakers(target_lang): return gr.Dropdown(choices=AVAILABLE_SPEAKERS[target_lang], value=AVAILABLE_SPEAKERS[target_lang][0]) user_target_lang.change( fn=update_target_speakers, inputs=[user_target_lang], outputs=[user_target_speaker] ) async def periodic_update(): transcription = await update_transcription() translation = await update_translation() audio = await update_audio() return ( transcription, translation, audio ) demo.load( periodic_update, inputs=[], outputs=[ user_transcription_output, user_translation_output, user_audio_output, ], every=0.1 ) # JavaScript for client-side queue and playback handling user_audio_output.change( None, # No backend change needed, we only handle frontend actions inputs=user_audio_output, # Set the user_audio_output as input to capture its audio changes outputs=None, js=""" async (audioFilePath) => { // Debug: Log received audio file path console.log("Received audio file path:", audioFilePath); if (!window.audioQueue) { window.audioQueue = []; window.isPlaying = false; } // Ensure the correct URL for the audio file is available if (audioFilePath && audioFilePath.url) { console.log("Processing audio file..."); try { // Fetch and decode the audio file const response = await fetch(audioFilePath.url); if (!response.ok) { console.error("Failed to fetch audio file:", response.statusText); return; } const audioData = await response.arrayBuffer(); const audioContext = new AudioContext(); const decodedData = await audioContext.decodeAudioData(audioData); // Split the decoded audio buffer into two chunks const totalDuration = decodedData.duration; const midPoint = Math.floor(decodedData.length / 2); // Midpoint for splitting const sampleRate = decodedData.sampleRate; // Create two separate AudioBuffers for each chunk const firstHalfBuffer = audioContext.createBuffer(decodedData.numberOfChannels, midPoint, sampleRate); const secondHalfBuffer = audioContext.createBuffer(decodedData.numberOfChannels, decodedData.length - midPoint, sampleRate); // Copy data from original buffer to the two new buffers for (let channel = 0; channel < decodedData.numberOfChannels; channel++) { firstHalfBuffer.copyToChannel(decodedData.getChannelData(channel).slice(0, midPoint), channel, 0); secondHalfBuffer.copyToChannel(decodedData.getChannelData(channel).slice(midPoint), channel, 0); } // Add both chunks to the queue window.audioQueue.push(firstHalfBuffer); window.audioQueue.push(secondHalfBuffer); console.log("Two audio chunks added to queue. Queue length:", window.audioQueue.length); // Function to play the next audio chunk from the queue const playNextChunk = async () => { console.log("Attempting to play next chunk. isPlaying:", window.isPlaying); if (!window.isPlaying && window.audioQueue.length > 0) { console.log("Starting playback..."); window.isPlaying = true; // Get the next audio buffer from the queue const audioBuffer = window.audioQueue.shift(); console.log("Playing audio chunk from buffer."); const source = audioContext.createBufferSource(); source.buffer = audioBuffer; source.connect(audioContext.destination); // When the audio finishes playing, play the next chunk source.onended = () => { console.log("Audio chunk finished playing."); window.isPlaying = false; playNextChunk(); // Play the next audio chunk in the queue }; source.start(0); // Start playing the current chunk console.log("Audio chunk started."); } else { console.log("Already playing or queue is empty."); } }; // Start playing the next chunk if not already playing playNextChunk(); } catch (error) { console.error("Error during audio playback:", error); window.isPlaying = false; } } else { console.log("No valid audio file path received."); } } """ ) demo.queue() #demo.launch(auth=(os.getenv("DEV_USER"), os.getenv("DEV_PWD"))) asyncio.run(demo.launch(auth=(os.getenv("DEV_USER"), os.getenv("DEV_PWD"))))