import torch from diffusers import ( StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, ) from PIL import Image class QRControlNet: def __init__(self, device: str = "cuda"): torch_dtype = torch.float16 if device == "cuda" else torch.float32 controlnet = ControlNetModel.from_pretrained( "DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch_dtype ) pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, # safety_checker=None, torch_dtype=torch_dtype, ).to(device) if device == "cuda": pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) self.pipe = pipe def generate_image( self, source_image: Image, control_image: Image, prompt: str, negative_prompt: str, img_size=512, num_inference_steps: int = 50, guidance_scale: int = 20, controlnet_conditioning_scale: float = 3.0, strength=0.9, seed=42, **kwargs ): width = height = img_size generator = torch.manual_seed(seed) image = self.pipe( prompt=prompt, negative_prompt=negative_prompt, image=source_image, control_image=control_image, width=width, height=height, guidance_scale=guidance_scale, controlnet_conditioning_scale=controlnet_conditioning_scale, # 3.0, generator=generator, strength=strength, num_inference_steps=num_inference_steps, **kwargs ) return image.images[0]