import gradio as gr import torch from omegaconf import OmegaConf from gligen.task_grounded_generation import grounded_generation_box, load_ckpt, load_common_ckpt import json import numpy as np from PIL import Image, ImageDraw, ImageFont from functools import partial from collections import Counter import math import gc from gradio import processing_utils from typing import Optional import warnings from datetime import datetime from huggingface_hub import hf_hub_download hf_hub_download = partial(hf_hub_download, library_name="gligen_demo") import sys import os import openai sys.tracebacklimit = 0 def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin', subfolder=None): cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location='cpu') def load_ckpt_config_from_hf(modality): ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='model') config = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='config') return ckpt, config def ckpt_load_helper(modality, is_inpaint, is_style, common_instances=None): pretrained_ckpt_gligen, config = load_ckpt_config_from_hf(modality) config = OmegaConf.create( config["_content"] ) # config used in training config.alpha_scale = 1.0 config.model['params']['is_inpaint'] = is_inpaint config.model['params']['is_style'] = is_style if common_instances is None: common_ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'common.pth', subfolder='model') common_instances = load_common_ckpt(config, common_ckpt) loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen, common_instances) return loaded_model_list, common_instances class Instance: def __init__(self, capacity = 2): self.model_type = 'base' self.loaded_model_list = {} self.counter = Counter() self.global_counter = Counter() self.loaded_model_list['base'], self.common_instances = ckpt_load_helper( 'gligen-generation-text-box', is_inpaint=False, is_style=False, common_instances=None ) self.capacity = capacity def _log(self, model_type, batch_size, instruction, phrase_list): self.counter[model_type] += 1 self.global_counter[model_type] += 1 current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format( current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list )) def get_model(self, model_type, batch_size, instruction, phrase_list): if model_type in self.loaded_model_list: self._log(model_type, batch_size, instruction, phrase_list) return self.loaded_model_list[model_type] if self.capacity == len(self.loaded_model_list): least_used_type = self.counter.most_common()[-1][0] del self.loaded_model_list[least_used_type] del self.counter[least_used_type] gc.collect() torch.cuda.empty_cache() self.loaded_model_list[model_type] = self._get_model(model_type) self._log(model_type, batch_size, instruction, phrase_list) return self.loaded_model_list[model_type] def _get_model(self, model_type): if model_type == 'base': return ckpt_load_helper( 'gligen-generation-text-box', is_inpaint=False, is_style=False, common_instances=self.common_instances )[0] elif model_type == 'inpaint': return ckpt_load_helper( 'gligen-inpainting-text-box', is_inpaint=True, is_style=False, common_instances=self.common_instances )[0] elif model_type == 'style': return ckpt_load_helper( 'gligen-generation-text-image-box', is_inpaint=False, is_style=True, common_instances=self.common_instances )[0] assert False instance = Instance() def load_clip_model(): from transformers import CLIPProcessor, CLIPModel version = "openai/clip-vit-large-patch14" model = CLIPModel.from_pretrained(version).cuda() processor = CLIPProcessor.from_pretrained(version) return { 'version': version, 'model': model, 'processor': processor, } clip_model = load_clip_model() class ImageMask(gr.components.Image): """ Sets: source="canvas", tool="sketch" """ is_template = True def __init__(self, **kwargs): super().__init__(source="upload", tool="sketch", interactive=True, **kwargs) def preprocess(self, x): if x is None: return x if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict: decode_image = processing_utils.decode_base64_to_image(x) width, height = decode_image.size mask = np.zeros((height, width, 4), dtype=np.uint8) mask[..., -1] = 255 mask = self.postprocess(mask) x = {'image': x, 'mask': mask} return super().preprocess(x) class Blocks(gr.Blocks): def __init__( self, theme: str = "default", analytics_enabled: Optional[bool] = None, mode: str = "blocks", title: str = "Gradio", css: Optional[str] = None, **kwargs, ): self.extra_configs = { 'thumbnail': kwargs.pop('thumbnail', ''), 'url': kwargs.pop('url', 'https://gradio.app/'), 'creator': kwargs.pop('creator', 'Jenny Sun'), } super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs) warnings.filterwarnings("ignore") def get_config_file(self): config = super(Blocks, self).get_config_file() for k, v in self.extra_configs.items(): config[k] = v return config ''' inference model ''' @torch.no_grad() def inference(task, language_instruction, grounding_instruction, inpainting_boxes_nodrop, image, alpha_sample, guidance_scale, batch_size, fix_seed, rand_seed, actual_mask, style_image, *args, **kwargs): grounding_instruction = json.loads(grounding_instruction) phrase_list, location_list = [], [] for k, v in grounding_instruction.items(): phrase_list.append(k) location_list.append(v) placeholder_image = Image.open('images/teddy.jpg').convert("RGB") image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled batch_size = int(batch_size) if not 1 <= batch_size <= 4: batch_size = 2 if style_image == None: has_text_mask = 1 has_image_mask = 0 # then we hack above 'image_list' else: valid_phrase_len = len(phrase_list) phrase_list += ['placeholder'] has_text_mask = [1]*valid_phrase_len + [0] image_list = [placeholder_image]*valid_phrase_len + [style_image] has_image_mask = [0]*valid_phrase_len + [1] location_list += [ [0.0, 0.0, 1, 0.01] ] # style image grounding location if task == 'Grounded Inpainting': alpha_sample = 1.0 instruction = dict( prompt = language_instruction, phrases = phrase_list, images = image_list, locations = location_list, alpha_type = [alpha_sample, 0, 1.0 - alpha_sample], has_text_mask = has_text_mask, has_image_mask = has_image_mask, save_folder_name = language_instruction, guidance_scale = guidance_scale, batch_size = batch_size, fix_seed = bool(fix_seed), rand_seed = int(rand_seed), actual_mask = actual_mask, inpainting_boxes_nodrop = inpainting_boxes_nodrop, ) # for debugging purposes, uncomment to view all instruction values # fed into the model # print("instruction values", instruction) get_model = partial(instance.get_model, batch_size=batch_size, instruction=language_instruction, phrase_list=phrase_list) with torch.autocast(device_type='cuda', dtype=torch.float16): if task == 'Grounded Generation': if style_image == None: return grounded_generation_box(get_model('base'), instruction, *args, **kwargs) else: return grounded_generation_box(get_model('style'), instruction, *args, **kwargs) elif task == 'Grounded Inpainting': assert image is not None instruction['input_image'] = image.convert("RGB") return grounded_generation_box(get_model('inpaint'), instruction, *args, **kwargs) def draw_box(boxes=[], texts=[], img=None): if len(boxes) == 0 and img is None: return None if img is None: img = Image.new('RGB', (512, 512), (255, 255, 255)) colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"] draw = ImageDraw.Draw(img) font = ImageFont.truetype("DejaVuSansMono.ttf", size=18) for bid, box in enumerate(boxes): draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4) anno_text = texts[bid] draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4) draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255)) return img def get_concat(ims): if len(ims) == 1: n_col = 1 else: n_col = 2 n_row = math.ceil(len(ims) / 2) dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white") for i, im in enumerate(ims): row_id = i // n_col col_id = i % n_col dst.paste(im, (im.width * col_id, im.height * row_id)) return dst def auto_append_grounding(language_instruction, grounding_texts): for grounding_text in grounding_texts: if grounding_text not in language_instruction and grounding_text != 'auto': language_instruction += "; " + grounding_text print(language_instruction) return language_instruction def generate(task, language_instruction, grounding_texts, sketch_pad, alpha_sample, guidance_scale, batch_size, fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image, state): if 'boxes' not in state: state['boxes'] = [] boxes = state['boxes'] grounding_texts = [x.strip() for x in grounding_texts.split(';')] assert len(boxes) == len(grounding_texts) if len(boxes) != len(grounding_texts): if len(boxes) < len(grounding_texts): raise ValueError("""The number of boxes should be equal to the number of grounding objects. Number of boxes drawn: {}, number of grounding tokens: {}. Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts))) grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts)) boxes = (np.asarray(boxes) / 512).tolist() grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)}) print("GROUNDING instruction -- should be separated text semicolon", grounding_instruction) image = None actual_mask = None if task == 'Grounded Inpainting': image = state.get('original_image', sketch_pad['image']).copy() image = center_crop(image) image = Image.fromarray(image) if use_actual_mask: actual_mask = sketch_pad['mask'].copy() if actual_mask.ndim == 3: actual_mask = actual_mask[..., 0] actual_mask = center_crop(actual_mask, tgt_size=(64, 64)) actual_mask = torch.from_numpy(actual_mask == 0).float() if state.get('inpaint_hw', None): boxes = np.asarray(boxes) * 0.9 + 0.05 boxes = boxes.tolist() grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes) if obj != 'auto'}) # Removing append grounding # if append_grounding: # language_instruction = auto_append_grounding(language_instruction, grounding_texts) gen_images, gen_overlays = inference( task, language_instruction, grounding_instruction, boxes, image, alpha_sample, guidance_scale, batch_size, fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model, ) for idx, gen_image in enumerate(gen_images): if task == 'Grounded Inpainting' and state.get('inpaint_hw', None): hw = min(*state['original_image'].shape[:2]) gen_image = sized_center_fill(state['original_image'].copy(), np.array(gen_image.resize((hw, hw))), hw, hw) gen_image = Image.fromarray(gen_image) gen_images[idx] = gen_image blank_samples = batch_size % 2 if batch_size > 1 else 0 gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \ + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \ + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)] return gen_images + [state] def binarize(x): return (x != 0).astype('uint8') * 255 def sized_center_crop(img, cropx, cropy): y, x = img.shape[:2] startx = x // 2 - (cropx // 2) starty = y // 2 - (cropy // 2) return img[starty:starty+cropy, startx:startx+cropx] def sized_center_fill(img, fill, cropx, cropy): y, x = img.shape[:2] startx = x // 2 - (cropx // 2) starty = y // 2 - (cropy // 2) img[starty:starty+cropy, startx:startx+cropx] = fill return img def sized_center_mask(img, cropx, cropy): y, x = img.shape[:2] startx = x // 2 - (cropx // 2) starty = y // 2 - (cropy // 2) center_region = img[starty:starty+cropy, startx:startx+cropx].copy() img = (img * 0.2).astype('uint8') img[starty:starty+cropy, startx:startx+cropx] = center_region return img def center_crop(img, HW=None, tgt_size=(512, 512)): if HW is None: H, W = img.shape[:2] HW = min(H, W) img = sized_center_crop(img, HW, HW) img = Image.fromarray(img) img = img.resize(tgt_size) return np.array(img) def draw(task, input, grounding_texts, new_image_trigger, state): if type(input) == dict: image = input['image'] mask = input['mask'] else: mask = input if mask.ndim == 3: mask = mask[..., 0] image_scale = 1.0 # resize trigger if task == "Grounded Inpainting": mask_cond = mask.sum() == 0 # size_cond = mask.shape != (512, 512) if mask_cond and 'original_image' not in state: image = Image.fromarray(image) width, height = image.size scale = 600 / min(width, height) image = image.resize((int(width * scale), int(height * scale))) state['original_image'] = np.array(image).copy() image_scale = float(height / width) return [None, new_image_trigger + 1, image_scale, state] else: original_image = state['original_image'] H, W = original_image.shape[:2] image_scale = float(H / W) mask = binarize(mask) if mask.shape != (512, 512): # assert False, "should not receive any non- 512x512 masks." if 'original_image' in state and state['original_image'].shape[:2] == mask.shape: mask = center_crop(mask, state['inpaint_hw']) image = center_crop(state['original_image'], state['inpaint_hw']) else: mask = np.zeros((512, 512), dtype=np.uint8) # mask = center_crop(mask) mask = binarize(mask) if type(mask) != np.ndarray: mask = np.array(mask) if mask.sum() == 0 and task != "Grounded Inpainting": state = {} if task != 'Grounded Inpainting': image = None else: image = Image.fromarray(image) if 'boxes' not in state: state['boxes'] = [] if 'masks' not in state or len(state['masks']) == 0: state['masks'] = [] last_mask = np.zeros_like(mask) else: last_mask = state['masks'][-1] if type(mask) == np.ndarray and mask.size > 1: diff_mask = mask - last_mask else: diff_mask = np.zeros([]) if diff_mask.sum() > 0: x1x2 = np.where(diff_mask.max(0) != 0)[0] y1y2 = np.where(diff_mask.max(1) != 0)[0] y1, y2 = y1y2.min(), y1y2.max() x1, x2 = x1x2.min(), x1x2.max() if (x2 - x1 > 5) and (y2 - y1 > 5): state['masks'].append(mask.copy()) state['boxes'].append((x1, y1, x2, y2)) grounding_texts = [x.strip() for x in grounding_texts.split(';')] grounding_texts = [x for x in grounding_texts if len(x) > 0] if len(grounding_texts) < len(state['boxes']): grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))] box_image = draw_box(state['boxes'], grounding_texts, image) if box_image is not None and state.get('inpaint_hw', None): inpaint_hw = state['inpaint_hw'] box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw))) original_image = state['original_image'].copy() box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw) return [box_image, new_image_trigger, image_scale, state] def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False): if task != 'Grounded Inpainting': sketch_pad_trigger = sketch_pad_trigger + 1 blank_samples = batch_size % 2 if batch_size > 1 else 0 out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \ + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \ + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)] state = {} return [None, sketch_pad_trigger, None, 1.0] + out_images + [state] css = """ #img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img { height: var(--height) !important; max-height: var(--height) !important; min-height: var(--height) !important; } #paper-info a { color:#008AD7; text-decoration: none; } #paper-info a:hover { cursor: pointer; text-decoration: none; } """ rescale_js = """ function(x) { const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app'); let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0; const image_width = root.querySelector('#img2img_image').clientWidth; const target_height = parseInt(image_width * image_scale); document.body.style.setProperty('--height', `${target_height}px`); root.querySelectorAll('button.justify-center.rounded')[0].style.display='none'; root.querySelectorAll('button.justify-center.rounded')[1].style.display='none'; return x; } """ # Set up OpenAI API key openai.api_key = os.environ['OPENAI_API_KEY'] prompt_base = 'Separate the subjects in this sentence by semicolons. For example, the sentence "a tiger and a horse running in a greenland" should output "tiger; horse". If there are numbers, make each subject unique. For example, "2 dogs and 1 duck" would be "dog; dog; duck." Do the same for the following sentence: \n' original_input = "" separated_subjects = "" def separate_subjects(input_text): prompt = prompt_base + input_text response = openai.Completion.create( engine="text-davinci-002", prompt=prompt, max_tokens=1024, n=1, stop=None, temperature=0.7, ) output_text = response.choices[0].text.strip() return output_text with Blocks( css=css, analytics_enabled=False, title="GLIGen demo", ) as main: gr.Markdown('